Higher groundwater levels in western Europe characterize warm periods in the Common Era

. 2020 Oct 01 ; 10 (1) : 16284. [epub] 20201001

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33004966
Odkazy

PubMed 33004966
PubMed Central PMC7530755
DOI 10.1038/s41598-020-73383-8
PII: 10.1038/s41598-020-73383-8
Knihovny.cz E-zdroje

Hydroclimate, the interplay of moisture supply and evaporative demand, is essential for ecological and agricultural systems. The understanding of long-term hydroclimate changes is, however, limited because instrumental measurements are inadequate in length to capture the full range of precipitation and temperature variability and by the uneven distribution of high-resolution proxy records in space and time. Here, we present a tree-ring-based reconstruction of interannual to centennial-scale groundwater level (GWL) fluctuations for south-western Germany and north-eastern France. Continuously covering the period of 265-2017 CE, our new record from the Upper Rhine Valley shows that the warm periods during late Roman, medieval and recent times were characterized by higher GWLs. Lower GWLs were found during the cold periods of the Late Antique Little Ice Age (LALIA; 536 to ~ 660 CE) and the Little Ice Age (LIA; between medieval and recent warming). The reconstructed GWL fluctuations are in agreement with multidecadal North Atlantic climate variability derived from independent proxies. Warm and wet hydroclimate conditions are found during warm states of the Atlantic Ocean and positive phases of the North Atlantic Oscillation on decadal scales.

Zobrazit více v PubMed

Held IM, Soden BJ. Robust responses of the hydrological cycle to global warming. J. Clim. 2006;19:5686–5699. doi: 10.1175/JCLI3990.1. DOI

Trenberth KE, et al. Global warming and changes in drought. Nat. Clim. Change. 2014;4:17–22. doi: 10.1038/nclimate2067. DOI

Brázdil R, et al. Documentary and instrumental-based drought indices for the Czech Lands back to AD 1501. Clim. Res. 2016;70:103–117. doi: 10.3354/cr01380. DOI

Kress A, et al. Swiss tree rings reveal warm and wet summers during medieval times. Geophys. Res. Lett. 2014;41:1732–1737. doi: 10.1002/2013GL059081. DOI

Proctor C, Baker A, Barnes WL. A three thousand year record of North Atlantic climate. Clim Dyn. 2002;19:449–454. doi: 10.1007/s00382-002-0236-x. DOI

Büntgen U, et al. 2500 years of European climate variability and human susceptibility. Science. 2011;331:578–582. doi: 10.1126/science.1197175. PubMed DOI

Cook ER, et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015;1:e150056. PubMed PMC

Ghajarnia N, Kalantari Z, Orth R, Destouni G. Close co-variation between soil moisture and runoff emerging from multi-catchment data across Europe. Sci Rep. 2020;10:4817. doi: 10.1038/s41598-020-61621-y. PubMed DOI PMC

Cuthbert MO, et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim Change. 2019;9:137–141. doi: 10.1038/s41558-018-0386-4. DOI

Skiadaresis, G., Schwarz, J. A. & Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus robur L.). Front. For. Glob. Change. 2, 5, 10.3389/ffgc.2019.00005 (2019).

Tegel W, Vanmoerkerke J, Büntgen U. Updating historical tree-ring records for climate reconstruction. Quat. Sci. Rev. 2010;29:1957–1959. doi: 10.1016/j.quascirev.2010.05.018. DOI

Bairoch P, Batou J, Chèvre PL. population des villes Européennes de 800 à 185 (Geneva) Switzerland: Librairie Droz; 1988.

Bunde A, Büntgen U, Ludescher J, Luterbacher J, von Storch H. Is there memory in precipitation? Nat. Clim. Change. 2013;3:174–175. doi: 10.1038/nclimate1830. DOI

Bréda N, Granier A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea) Ann. For. Sci. 1996;53:521–536. doi: 10.1051/forest:19960232. DOI

Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature. 1999;400:149–151. doi: 10.1038/22087. DOI

Jia X, et al. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agric. For. Meteorol. 2016;228–229:120–129. doi: 10.1016/j.agrformet.2016.07.007. DOI

Ljungqvist FC, et al. Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature. 2016;532:94–98. doi: 10.1038/nature17418. PubMed DOI

Ljungqvist FC, et al. European warm-season temperature and hydroclimate since 850 CE. Environ. Res. Lett. 2019;14:084015. doi: 10.1088/1748-9326/ab2c7e. DOI

van Dijk GM, Marteijn ECL, Schulte-Wülwer-Leidig A. Ecological rehabilitation of the River Rhine: Plans, progress and perspectives. River. Res. Appl. 1995;11:377–388. doi: 10.1002/rrr.3450110311. DOI

Wada Y, Wisser D, Bierkens MFP. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 2014;5:15–40. doi: 10.5194/esd-5-15-2014. DOI

Scharnweber T, et al. Removing the no-analogue bias in modern accelerated tree growth leads to stronger medieval drought. Sci. Rep. 2019;9:2509. doi: 10.1038/s41598-019-39040-5. PubMed DOI PMC

Christensen JH, et al. et al. Climate phenomena and their relevance for future regional climate change. In: Stocker TF, et al.et al., editors. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013. pp. 1217–1308.

Dister E, Gomer D, Obrdlik P, Petermann P, Schneider E. Water mangement and ecological perspectives of the upper rhine's floodplains. Regul. Rivers Res. Manag. 1990;5:1–15. doi: 10.1002/rrr.3450050102. DOI

Solomina ON, et al. Glacier fluctuations during the past 2000 years. Quat. Sci. Rev. 2016;149:61–90. doi: 10.1016/j.quascirev.2016.04.008. DOI

Folland CK, et al. The summer North Atlantic oscillation: Past, present, and future. J. Clim. 2009;22:1082–1103. doi: 10.1175/2008JCLI2459.1. DOI

Sutton RT, Dong B. Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci. 2012;5:788–792. doi: 10.1038/ngeo1595. DOI

Wang, J. et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nat. Geosci. 10, 512–517

Trouet V, et al. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science. 2009;324:78–80. doi: 10.1126/science.1166349. PubMed DOI

Knight J, Folland CK, Scaife A. Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 2006;33:L17706. doi: 10.1029/2006GL026242. DOI

Büntgen U, et al. Effects of sample size in dendroclimatology. Clim. Res. 2012;53:263–269. doi: 10.3354/cr01107. DOI

Cook, E.R., Krusic, P.J., & Arstan, P.J. A tree-ring standardization program based on detrending and autoregressive time series modeling with interactive graphics. Tree-Ring Research Laboratory, Lamont-Doherty Earth Observatory, Columbia University, Earth Institute (2005). https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software.

Esper J, et al. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res. 2003;59:81–98.

Cook ER, Kairiukstis LA. Methods of Dendrochronology—Applications in the Environmental Sciences. Dordrecht: Kluwer Academic Publishers; 1990.

Osborn TJ, Briffa KR, Jones PD. Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time-series. Dendrochronologia. 1997;15:89–99.

Frank D, Esper J, Cook ER. On variance adjustments in tree-ring chronology development. TRACE. 2006;4:56–66.

Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Clim. 1984;23:201–213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2. DOI

Harris, I.C. & Jones, P.D. CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) Version 4.01 of High-Resolution Gridded Data of Month-By-Month Variation in Climate (Jan. 1901- Dec. 2016). University of East Anglia Climatic Research Unit: Centre for Environmental Data Analysis, 04 December 2017 (2017).

Vicente-Serrano SM, Beguería S, López-Moreno JI. A Multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010;23:1696–1718. doi: 10.1175/2009JCLI2909.1. DOI

Esper J, Frank DC, Wilson RJS, Briffa KR. Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett. 2005;32:L07711. doi: 10.1029/2004GL021236. DOI

Christiansen B, Ljungqvist FC. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys. 2017;55:40–96. doi: 10.1002/2016RG000521. DOI

Briffa KR, et al. Reconstructing summer temperatures in northern Fennoscandinavia back to AD 1700 using tree-ring data from Scots pine. Arct. Antarct. Alp. Res. 1988;20:385–394. doi: 10.2307/1551336. DOI

Cook ER, Briffa KR, Jones PD. Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int. J. Climatol. 1994;14:379–402. doi: 10.1002/joc.3370140404. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...