A Non-Targeted High-Resolution Mass Spectrometry Study for Extra Virgin Olive Oil Adulteration with Soft Refined Oils: Preliminary Findings from Two Different Laboratories
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33015432
PubMed Central
PMC7528164
DOI
10.1021/acsomega.0c00346
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This work presents a non-targeted high-resolution mass spectrometry inter-laboratory study for the detection of new chemical markers responsible of soft refined oils addition to extra virgin olive oils. Refined oils (soft deodorized and soft deacidified) were prepared on a laboratory scale starting from low-quality olive oils and analyzed together with a set of pure extra virgin olive oil (EVOO) samples and with mixtures of adulterated and pure EVOO at different percentages. The same analytical workflow was applied in two different laboratories equipped with two types of instrumentation (Q-Orbitrap and Q-TOF); a group of discriminant molecules was selected, and a tentative identification of compounds was also proposed. In summary, 12 molecules were identified as markers of this specific adulteration, and seven of them were selected as discriminative in both the laboratories, with a similar trend throughout the samples (i.e., propylene glycol 1 stearate). The results obtained in the two laboratories are comparable, concretely demonstrating the inter-laboratory repeatability of non-targeted studies. As a confirmation, the same markers were detected also in "in-house" mixtures and in suspect commercial deodorized mixtures, reinforcing the robustness of the results obtained and proving that, thanks to these molecules, mixtures containing at least 40% of adulterated oils can be detected.
Advanced Laboratory Research Barilla G e R Fratelli S p A Via Mantova 166 43122 Parma Italy
COTECA Srl Consulenze Tecniche agroindustriali 56121 Pisa Italy
Department of Food and Drug University of Parma Parco Area delle Scienze 95 A 43124 Parma Italy
Zobrazit více v PubMed
de Lange E. Report on the food crisis, fraud in the food chain and the control thereof (2013/2091(INI)); European Parliament, 2013.
I. O. C. IOC , COI/T.15/NC No 3/Rev. 14 - Trade standard applying to Olive Oils and Olive-Pomace Oils; International olive council, coi, Madrid, Spain, 2019.
Commission Delegated Regulation (EU) 2019/1604 of 27 September 2019 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis, Official Journal Of the European Union, n. L250, p. 14, 2019.
Garcia-Gonzalez D.; Aparicio D.; Aparicio-Ruiz R.. Olive oil in FoodIntegrity Handbook: A guide to food authenticity issues and analytical solutions, Nantes, 2018, pp. 336–357.
Melucci D.; Bendini A.; Tesini F.; Barbieri S.; Zappi A.; Vichi S.; Conte L.; Gallina Toschi T. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. 10.1016/j.foodchem.2016.02.131. PubMed DOI
Alonso-Salces R. M.; Moreno-Rojas J. M.; Holland M. V.; Reniero F.; Guillou C.; Héberger K. Virgin Olive Oil Authentication by Multivariate Analyses of 1H NMR Fingerprints and δ13C and δ2H Data. J. Agric. Food Chem. 2010, 58, 5586–5596. 10.1021/jf903989b. PubMed DOI
Faberi A.; Marianella R.; Fuselli F.; La Mantia A.; Ciardiello F.; Montesano C.; Mascini M.; Sergi M.; Compagnone D. Fatty acid composition and δ13 C of bulk and individual fatty acids as marker for authenticating Italian PDO/PGI extra virgin olive oils by means of isotopic ratio mass spectrometry. J. Mass Spectrom. 2014, 49, 840–849. 10.1002/jms.3399. PubMed DOI
Bontempo L.; Paolini M.; Franceschi P.; Ziller L.; García-González D. L.; Camin F. Characterisation and attempted differentiation of European and extra-European olive oils using stable isotope ratio analysis. Food Chem. 2019, 276, 782–789. 10.1016/j.foodchem.2018.10.077. PubMed DOI
Vera D. N.; Jiménez-Carvelo A. M.; Cuadros-Rodríguez L.; Ruisánchez I.; Pilar Callao M. Authentication of the geographical origin of extra-virgin olive oil of the Arbequina cultivar by chromatographic fingerprinting and chemometrics. Talanta 2019, 203, 194–202. 10.1016/j.talanta.2019.05.064. PubMed DOI
Aparicio-Ruiz R.; Romero I.; García-González D. L.; Oliver-Pozo C.; Aparicio R. Soft-deodorization of virgin olive oil: Study of the changes of quality and chemical composition. Food Chem. 2017, 220, 42–50. 10.1016/j.foodchem.2016.09.176. PubMed DOI
Pérez-Camieno M. D. C.; Cert A.; Romero-Segura A.; Cert-Trujillo R.; Moreda W. Alkyl esters of fatty acids a useful tool to detect soft deodorized olive oils. J. Agric. Food Chem. 2008, 56, 6740–6744. 10.1021/jf801131b. PubMed DOI
Cecchi L.; Innocenti M.; Melani F.; Migliorini M.; Conte L.; Mulinacci N. New isobaric lignans from Refined Olive Oils as quality markers for Virgin Olive Oils. Food Chem. 2017, 219, 148–157. 10.1016/j.foodchem.2016.09.132. PubMed DOI
Serani A.; Piacenti D. Sistema analitico per I’dentificazione di oli deodorati in oli vergini di oliva – Nota 1 – Analisi dei pigmenti clorofilliani in oli vergini di oliva. Riv. Ital. Sostanze Grasse. 2001, 78, 459–463.
Serani A.; Piacenti D.; Staiano G. Sistema analitico per I’dentificazione di oli deodorati in oli vergini di oliva – Nota 2 – Cinetica di isomerizzazione dei digliceridi in oli vergini di oliva. Riv. Ital. Sostanze Grasse. 2001, 78, 525–528.
Vetter W.; Schröder M.; Lehnert K. Differentiation of Refined and Virgin Edible Oils by Means of the trans- and cis-Phytol Isomer Distribution. J. Agric. Food Chem. 2012, 60, 6103–6107. 10.1021/jf301373k. PubMed DOI
Cerretani L.; Bendini A.; Barbieri S.; Lercker G. Preliminary observations on the change of some chemical characteristics of virgin olive oils subjected to a ″soft deodorization″ process. Riv. Ital. Sostanze Grasse. 2008, 85, 75–82.
Rubert J.; Zachariasova M.; Hajslova J. Advances in high-resolution mass spectrometry based on metabolomics studies for food – a review. Food Addit. Contam., Part A 2015, 32, 1685–1708. 10.1080/19440049.2015.1084539. PubMed DOI
Kalogiouri N. P.; Alygizakis N. A.; Aalizadeh R.; Thomaidis N. S. Olive oil authenticity studies by target and nontarget LC–QTOF-MS combined with advanced chemometric techniques. Anal. Bioanal. Chem. 2016, 408, 7955–7970. 10.1007/s00216-016-9891-3. PubMed DOI
Gil-Solsona R.; Raro M.; Sales C.; Lacalle L.; Díaz R.; Ibáñez M.; Beltran J.; Sancho J. V.; Hernández F. J. Metabolomic approach for Extra virgin olive oil origin discrimination making use of ultra-high performance liquid chromatography −Quadrupole time-of-flight mass spectrometry. Food Control. 2016, 70, 350–359. 10.1016/j.foodcont.2016.06.008. DOI
Cavanna D.; Righetti L.; Elliott C.; Suman M. The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. Trends Food Sci. Technol. 2018, 80, 223–241. 10.1016/j.tifs.2018.08.007. DOI
Martin J.-C.; Maillot M.; Mazerolles G.; Verdu A.; Lyan B.; Migné C.; Defoort C.; Canlet C.; Junot C.; Guillou C.; Manach C.; Jabob D.; Bouveresse D. J.-R.; Paris E.; Pujos-Guillot E.; Jourdan F.; Giacomoni F.; Courant F.; Favé G.; Le Gall G.; Chassaigne H.; Tabet J.-C.; Martin J.-F.; Antignac J.-P.; Shintu L.; Defernez M.; Philo M.; Alexandre-Gouaubau M.-C.; Amiot-Carlin M.-J.; Bossis M.; Triba M. N.; Stojilkovic N.; Banzet N.; Molinié R.; Bott R.; Goulitquer S.; Caldarelli S.; Rutledge D. N. Can we trust untargeted metabolomics? Results of the metabo-ring initiative, a large-scale, multi-instrument inter-laboratory study. Metabolomics 2015, 11, 807–821. 10.1007/s11306-014-0740-0. PubMed DOI PMC
Cajka T.; Smilowitz J. T.; Fiehn O. Validating quantitative untargeted lipidomics across nine liquid chromatography–high-resolution mass spectrometry platforms. Anal Chem. 2017, 89, 12360–12368. 10.1021/acs.analchem.7b03404. PubMed DOI
Quintanilla-Casas B.; Bustamante J.; Guardiola F.; García-González D. L.; Barbieri S.; Bendini A.; Toschi T. G.; Vichi S.; Tres A. Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality. LWT- Food Sci. Technol. 2020, 121, 108936.10.1016/j.lwt.2019.108936. DOI
Esposto S.; Selvaggini R.; Taticchi A.; Veneziani G.; Sordini B.; Servili M. Quality evolution of extra-virgin olive oils according to their chemical composition during 22 months of storage under dark conditions. Food Chem. 2020, 311, 126044.10.1016/j.foodchem.2019.126044. PubMed DOI
Schymanski E. L.; Jeon J.; Gulde R.; Fenner K.; Ruff M.; Singer H. P.; Hollender J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. 10.1021/es5002105. PubMed DOI
Rovellini P.; Cortesi N.; Fedeli E. Ossidazione dei lipidi. Riv. Ital. Sostanze Grasse. 1997, 74, 181–189.
Frankel E. N. Review. Recent advances in lipid oxidation. J. Sci. Food Agric. 1991, 54, 495–511. 10.1002/jsfa.2740540402. DOI
Gutiérrez F.; Villafranca M. J.; Castellano J. M. Changes in the main components and quality indices of virgin olive oil during oxidation. J. Am. Oil Chem. Soc. 2002, 79, 669–676. 10.1007/s11746-002-0541-3. DOI
Montaño A.; Hernández M.; Garrido I.; Llerena J.; Espinosa F. Fatty Acid and Phenolic Compound Concentrations in Eight Different Monovarietal Virgin Olive Oils from Extremadura and the Relationship with Oxidative Stability. Int. J. Mol. Sci. 2016, 17, 1960.10.3390/ijms17111960. PubMed DOI PMC
Wang J.; Xu J.; Gong X.; Yang M.; Zhang C.; Li M. Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review. Molecules 2019, 24, 155.10.3390/molecules24010155. PubMed DOI PMC
Vaclavik L.; Cajka T.; Hrbek V.; Hajslova J. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Anal. Chim. Acta 2009, 645, 56–63. 10.1016/j.aca.2009.04.043. PubMed DOI
Cavanna D.; Catellani D.; Dall’Asta C.; Suman M. Egg product freshness evaluation: a metabolomic approach. J. Mass Spectrom. 2018, 53, 849–861. 10.1002/jms.4256. PubMed DOI PMC
Hurkova K.; Rubert J.; Stranska-Zachariasova M.; Hajslova J. Strategies to Document Adulteration of Food Supplement Based on Sea Buckthorn Oil: a Case Study. Food Anal. Methods. 2017, 10, 1317–1327. 10.1007/s12161-016-0674-4. DOI
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage (last access: 19/08/2019).
Sumner L. W.; Amberg A.; Barrett D.; Beale M. H.; Beger R.; Daykin C. A.; Fan T. W.-M.; Fiehn O.; Goodacre R.; Griffin J. L.; Hankemeier T.; Hardy N.; Harnly J.; Higashi R.; Kopka J.; Lane A. N.; Lindon J. C.; Marriott P.; Nicholls A. W.; Reily M. D.; Thaden J. J.; Viant M. R. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. 10.1007/s11306-007-0082-2. PubMed DOI PMC