• This record comes from PubMed

The Arabidopsis RLCK VI_A2 Kinase Controls Seedling and Plant Growth in Parallel with Gibberellin

. 2020 Oct 01 ; 21 (19) : . [epub] 20201001

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
K124828 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund
18-10349S Czech Science Foundation
GINOP-2.3.2-15-2016-00001 Hungarian Ministry for National Economy
BO/00522/19/8 János Bolyai Research Scholarship

The plant-specific receptor-like cytoplasmic kinases (RLCKs) form a large, poorly characterized family. Members of the RLCK VI_A class of dicots have a unique characteristic: their activity is regulated by Rho-of-plants (ROP) GTPases. The biological function of one of these kinases was investigated using a T-DNA insertion mutant and RNA interference. Loss of RLCK VI_A2 function resulted in restricted cell expansion and seedling growth. Although these phenotypes could be rescued by exogenous gibberellin, the mutant did not exhibit lower levels of active gibberellins nor decreased gibberellin sensitivity. Transcriptome analysis confirmed that gibberellin is not the direct target of the kinase; its absence rather affected the metabolism and signalling of other hormones such as auxin. It is hypothesized that gibberellins and the RLCK VI_A2 kinase act in parallel to regulate cell expansion and plant growth. Gene expression studies also indicated that the kinase might have an overlapping role with the transcription factor circuit (PIF4-BZR1-ARF6) controlling skotomorphogenesis-related hypocotyl/cotyledon elongation. Furthermore, the transcriptomic changes revealed that the loss of RLCK VI_A2 function alters cellular processes that are associated with cell membranes, take place at the cell periphery or in the apoplast, and are related to cellular transport and/or cell wall reorganisation.

See more in PubMed

Lehti-Shiu M.D., Shiu S.-H. Diversity, classification and function of the plant protein kinase superfamily. Philos. Trans. R. Soc. B Biol. Sci. 2012;367:2619–2639. doi: 10.1098/rstb.2012.0003. PubMed DOI PMC

Shiu S.H., Bleecker A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA. 2001;98:10763–10768. doi: 10.1073/pnas.181141598. PubMed DOI PMC

Shiu S.-H., Karlowski W.M., Pan R., Tzeng Y.-H., Mayer K.F.X., Li W.-H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 2004;16:1220–1234. doi: 10.1105/tpc.020834. PubMed DOI PMC

Liang X., Zhou J.-M. Receptor-Like Cytoplasmic Kinases: Central players in plant receptor kinase–mediated signaling. Annu. Rev. Plant Biol. 2018;69:267–299. doi: 10.1146/annurev-arplant-042817-040540. PubMed DOI

Jurca M.E., Bottka S., Fehér A. Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI) Plant Cell Rep. 2008;27:739–748. doi: 10.1007/s00299-007-0494-5. PubMed DOI

Huesmann C., Reiner T., Hoefle C., Preuss J., Jurca M.E., Domoki M., Fehér A., Hückelhoven R. Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. Plant Physiol. 2012;159:311–320. doi: 10.1104/pp.111.191940. PubMed DOI PMC

Molendijk A.J., Ruperti B., Singh M.K., Dovzhenko A., Ditengou F.A., Milia M., Westphal L., Rosahl S., Soellick T., Uhrig J., et al. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J. 2008;53:909–923. doi: 10.1111/j.1365-313X.2007.03384.x. PubMed DOI

Dorjgotov D., Jurca M.E., Fodor-Dunai C., Szűcs A., Ötvös K., Klement É., Bíró J., Fehér A. Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Lett. 2009;583:1175–1182. doi: 10.1016/j.febslet.2009.02.047. PubMed DOI

Reiner T., Hoefle C., Huesmann C., Ménesi D., Fehér A., Hückelhoven R. The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI_A3 is involved in control of basal resistance to powdery mildew and trichome branching. Plant Cell Rep. 2015;34:457–468. doi: 10.1007/s00299-014-1725-1. PubMed DOI

Zhao Z., Manser E. PAK and other Rho-associated kinases–effectors with surprisingly diverse mechanisms of regulation. Biochem. J. 2005;386:201–214. doi: 10.1042/BJ20041638. PubMed DOI PMC

Fehér A., Lajkó D.B. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins. Plant Sci. 2015;237:93–107. doi: 10.1016/j.plantsci.2015.05.007. PubMed DOI

Lajkó D.B., Valkai I., Domoki M., Ménesi D., Ferenc G., Ayaydin F., Fehér A. In silico identification and experimental validation of amino acid motifs required for the Rho-of-plants GTPase-mediated activation of receptor-like cytoplasmic kinases. Plant Cell Rep. 2018;37:627–639. doi: 10.1007/s00299-018-2256-y. PubMed DOI

Feiguelman G., Fu Y., Yalovsky S. ROP GTPases structure-function and signaling pathways. Plant Physiol. 2018;176:57–79. doi: 10.1104/pp.17.01415. PubMed DOI PMC

Enders T.A., Frick E.M., Strader L.C. An Arabidopsis kinase cascade influences auxin-responsive cell expansion. Plant J. 2017;92:68–81. doi: 10.1111/tpj.13635. PubMed DOI PMC

Kleinboelting N., Huep G., Kloetgen A., Viehoever P., Weisshaar B. GABI-Kat SimpleSearch: New features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res. 2012;40:D1211–D1215. doi: 10.1093/nar/gkr1047. PubMed DOI PMC

Scholl R.L., May S.T., Ware D.H. Seed and molecular resources for Arabidopsis. Plant Physiol. 2000;124:1477–1480. doi: 10.1104/pp.124.4.1477. PubMed DOI PMC

Rubio V., Shen Y., Saijo Y., Liu Y., Gusmaroli G., Dinesh-Kumar S.P., Deng X.W. An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J. 2005;41:767–778. doi: 10.1111/j.1365-313X.2004.02328.x. PubMed DOI

Zuo J., Niu Q.W., Chua N.H. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 2000;24:265–273. doi: 10.1046/j.1365-313x.2000.00868.x. PubMed DOI

Ivakov A., Persson S. Plant cell shape: Modulators and measurements. Front. Plant Sci. 2013;4:439. doi: 10.3389/fpls.2013.00439. PubMed DOI PMC

Yamaguchi S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008;59:225–251. doi: 10.1146/annurev.arplant.59.032607.092804. PubMed DOI

Choi H., Jeong S., Kim D.S., Na H.J., Ryu J.S., Lee S.S., Nam H.G., Lim P.O., Woo H.R. The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phytochrome B-mediated red light signaling. Physiol. Plant. 2014;150:308–320. doi: 10.1111/ppl.12087. PubMed DOI

Hedden P., Thomas S.G. Gibberellin biosynthesis and its regulation. Biochem. J. 2012;444:11–25. doi: 10.1042/BJ20120245. PubMed DOI

Wulff N., Ernst H.A., Jørgensen M.E., Lambertz S., Maierhofer T., Belew Z.M., Crocoll C., Motawia M.S., Geiger D., Jørgensen F.S., et al. An optimized screen reduces the number of GA transporters and provides insights into Nitrate Transporter 1/Peptide Transporter family substrate determinants. Front. Plant Sci. 2019;10:1106. doi: 10.3389/fpls.2019.01106. PubMed DOI PMC

Chiba Y., Shimizu T., Miyakawa S., Kanno Y., Koshiba T., Kamiya Y., Seo M. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J. Plant Res. 2015;128:679–686. doi: 10.1007/s10265-015-0710-2. PubMed DOI

Tal I., Zhang Y., Jørgensen M.E., Pisanty O., Barbosa I.C.R., Zourelidou M., Regnault T., Crocoll C., Erik Olsen C., Weinstain R., et al. The Arabidopsis NPF3 protein is a GA transporter. Nat. Commun. 2016;7:11486. doi: 10.1038/ncomms11486. PubMed DOI PMC

Corratgé-Faillie C., Lacombe B. Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J. Exp. Bot. 2017;68:3107–3113. doi: 10.1093/jxb/erw499. PubMed DOI

Kanno Y., Oikawa T., Chiba Y., Ishimaru Y., Shimizu T., Sano N., Koshiba T., Kamiya Y., Ueda M., Seo M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat. Commun. 2016;7:13245. doi: 10.1038/ncomms13245. PubMed DOI PMC

Sun T.P., Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell. 1994;6:1509–1518. PubMed PMC

Archacki R., Buszewicz D., Sarnowski T.J., Sarnowska E., Rolicka A.T., Tohge T., Fernie A.R., Jikumaru Y., Kotlinski M., Iwanicka-Nowicka R., et al. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in arabidopsis. PLoS ONE. 2013;8:e58588. doi: 10.1371/journal.pone.0058588. PubMed DOI PMC

Li K., Yu R., Fan L.-M., Wei N., Chen H., Deng X.W. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat. Commun. 2016;7:11868. doi: 10.1038/ncomms11868. PubMed DOI PMC

Oh E., Zhu J.Y., Bai M.Y., Arenhart R.A., Sun Y., Wang Z.Y. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife. 2014;2014:e03031. doi: 10.7554/eLife.03031. PubMed DOI PMC

Vij S., Giri J., Dansana P.K., Kapoor S., Tyagi A.K. The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: Organization, phylogenetic relationship, and expression during development and stress. Mol. Plant. 2008;1:732–750. doi: 10.1093/mp/ssn047. PubMed DOI

Lin W., Ma X., Shan L., He P. Big Roles of Small Kinases: The Complex Functions of Receptor-like Cytoplasmic Kinases in Plant Immunity and Development. J. Integr. Plant Biol. 2013;55:1188–1197. doi: 10.1111/jipb.12071. PubMed DOI PMC

Chen X., Wu S., Liu Z., Friml J. Environmental and endogenous control of cortical microtubule orientation. Trends Cell Biol. 2016;26:409–419. doi: 10.1016/j.tcb.2016.02.003. PubMed DOI

Ma Q., Wang X., Sun J., Mao T. Coordinated regulation of hypocotyl cell elongation by light and ethylene through a microtubule destabilizing protein. Plant Physiol. 2018;176:678–690. doi: 10.1104/pp.17.01109. PubMed DOI PMC

Fu Y., Xu T., Zhu L., Wen M., Yang Z. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr. Biol. 2009;19:1827–1832. doi: 10.1016/j.cub.2009.08.052. PubMed DOI PMC

Cosgrove D.J. Loosening of plant cell walls by expansins. Nature. 2000;407:321–326. doi: 10.1038/35030000. PubMed DOI

Van Sandt V.S.T., Suslov D., Verbelen J.-P., Vissenberg K. Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann. Bot. 2007;100:1467–1473. doi: 10.1093/aob/mcm248. PubMed DOI PMC

Sadava D., Chrispeels M.J. Hydroxyproline-rich cell wall protein (extensin): Role in the cessation of elongation in excised pea epicotyls. Dev. Biol. 1973;30:49–55. doi: 10.1016/0012-1606(73)90047-X. PubMed DOI

Passardi F., Penel C., Dunand C. Performing the paradoxical: How plant peroxidases modify the cell wall. Trends Plant Sci. 2004;9:534–540. doi: 10.1016/j.tplants.2004.09.002. PubMed DOI

Bernardo-García S., de Lucas M., Martínez C., Espinosa-Ruiz A., Davière J.-M., Prat S. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev. 2014;28:1681–1694. doi: 10.1101/gad.243675.114. PubMed DOI PMC

Willige B.C., Isono E., Richter R., Zourelidou M., Schwechheimer C. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport–dependent growth and development in Arabidopsis thaliana. Plant Cell. 2011;23:2184–2195. doi: 10.1105/tpc.111.086355. PubMed DOI PMC

Curtis M.D., Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003;133:462–469. doi: 10.1104/pp.103.027979. PubMed DOI PMC

Koncz C., Martini N., Szabados L., Hrouda M., Bachmair A., Schell J. Specialized vectors for gene tagging and expression studies. In: Gelvin S.B., Schilperoort R.A., editors. Plant Molecular Biology Manual. Springer; Dordrecht, The Netherland: 1994. pp. 53–74.

Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Talbot M.J., White R.G. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope. Plant Methods. 2013;9:40. doi: 10.1186/1746-4811-9-40. PubMed DOI PMC

Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI

Rittenberg D., Foster G.L. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem. 1940;133:737–744.

Wu G., Carville J.S., Spalding E.P. ABCB19-mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle. Plant J. 2016;85:209–218. doi: 10.1111/tpj.13095. PubMed DOI PMC

Ortuño A., Río J.D.D., Casas J., Serrano M., Acosta M., Sánchez-Bravo J. Influence of ACC and Ethephon on cell growth in etiolated lupin hypocotyls. dependence on cell growth state. Biol. Plant. 2008;33:81. doi: 10.1007/BF02897783. DOI

Alabadí D., Gil J., Blázquez M.A., García-Martínez J.L. Gibberellins repress photomorphogenesis in darkness. Plant Physiol. 2004;134:1050–1057. doi: 10.1104/pp.103.035451. PubMed DOI PMC

Baba A.I., Valkai I., Labhane N.M., Koczka L., Andrási N., Klement É., Darula Z., Medzihradszky K.F., Szabados L., Fehér A., et al. CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana. Int. J. Mol. Sci. 2019;20:6120. doi: 10.3390/ijms20246120. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Cheng C.-Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S., Town C.D. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89:789–804. doi: 10.1111/tpj.13415. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...