Denaturing gradient gel electrophoresis and multi-SIR profiles of soil microbial communities from a karst doline at Aggtelek National Park, Hungary
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
K79135
OTKA
PubMed
33030669
PubMed Central
PMC7854432
DOI
10.1007/s12223-020-00828-y
PII: 10.1007/s12223-020-00828-y
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteria, DGGE, Karst soil, MicroResp, Multi-SIR,
- MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- denaturační gradientová gelová elektroforéza MeSH
- geologické jevy MeSH
- mikrobiota fyziologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- roční období MeSH
- shluková analýza MeSH
- uhlík metabolismus MeSH
- veřejné parky * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Maďarsko MeSH
- Názvy látek
- půda MeSH
- RNA ribozomální 16S MeSH
- uhlík MeSH
Soils play an important role in the ecosystem of karstic landscapes both as a buffer zone and as a source of acidity to belowground water. Although the microbiota of karstic soils is known to have a great effect on karstification processes, the activity and composition of these communities are largely unknown. This study gives a comparative analysis of soil microbial profiles from different parts of a doline located at Aggtelek, Hungary. The aim was to reveal the relationships between the vegetation type and genetic fingerprints and substrate utilisation (multi-SIR) profiles of the soil microbiota. Soil samples were collected in early and late springs along a transect in a doline covered with different types of vegetation. Genetic fingerprints of bacterial communities were examined by denaturing gradient gel electrophoresis (DGGE) based on the 16S rRNA gene, along with multi-SIR profiles of the microbial communities measured by the MicroResp method using 15 different carbon sources. Genetic fingerprinting indicated that vegetation cover had a strong effect on the composition of soil bacterial communities. Procrustean analysis showed only a weak connection between DGGE and multi-SIR profiles, probably due to the high functional redundancy of the communities. Seasonality had a significant effect on substrate usage, which can be an important factor to consider in future studies.
Zobrazit více v PubMed
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Bárány I, Mezősi G. Interrelations of some factors of karst corrosion in a Bükk doline. Acta Univ Szeged Acta Geogr. 1977;17:133–140.
Barton HA, Northup DE. Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud. 2007;69:163–178.
Baskar S, Routh J, Baskar R, Kumar A, Miettinen H, Itävaara M. Evidences for microbial precipitation of calcite in speleothems from Krem Syndai in Jaintia Hills, Meghalaya, India. Geomicrobiol J. 2016;33:906–933. doi: 10.1080/01490451.2015.1127447. DOI
Bátori Z, Csiky J, Farkas T, Vojtkó A, Erdős L, Kovács D, Wirth T, Körmöczi L, Vojtkó A. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change. Int J Speleol. 2014;43:15–26. doi: 10.5038/1827-806X.43.1.2. DOI
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–486. doi: 10.1016/j.tplants.2012.04.001. PubMed DOI
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009;68:1–13. doi: 10.1111/j.1574-6941.2009.00654.x. PubMed DOI
Buzás I (1988) Manual for soil and agrochemical analyses 2: Physico-chemical and chemical analysis of soils. (in Hungarian). Mezőgazda Kiadó, Budapest
Buzás I (1993) Manual for soil and agrochemical analyses 1: physical, water management and mineral analysis of soils. (in Hungarian). INDA 4321 Kiadó, Budapest
Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol. 2003;69:3593–3599. doi: 10.1128/AEM.69.6.3593. PubMed DOI PMC
Creamer RE, Stone D, Berry P, Kuiper I. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl Soil Ecol. 2016;97:36–43. doi: 10.1016/j.apsoil.2015.08.004. DOI
Darabos G. The role of soil microrganisms in karst corrosion. Acta Univ Szeged Acta Geogr TOMUS. 1999;XXXVII:54–59.
Ford D, Williams P. Karst hydrogeology and geomorphology. West Sussex: Wiley; 2007.
Gutiérrez F, Parise M, De Waele J, Jourde H. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci Rev. 2014;138:61–88. doi: 10.1016/j.earscirev.2014.08.002. DOI
Haichar FZ e, Santaella C, Heulin T, Achouak W. Root exudates mediated interactions belowground. Soil Biol Biochem. 2014;77:69–80. doi: 10.1016/j.soilbio.2014.06.017. DOI
Hooper DU, Bignell DE, Brown VK, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience. 2000;50:1049–1061. doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2. DOI
Jones DL. Organic acids in the rhizosphere–a critical review. Plant Soil. 1998;205:25–44. doi: 10.1023/A:1004356007312. DOI
Kevei I, Zámbó L. Study of the relationship between bacteria activity in karstic soils and corrosion. Ann Univ Sci Budapestinensis Rolando Eötvös Nomin Sect Geogr. 1985;20–21:325–334.
Khlifa R, Paquette A, Messier C, Reich PB, Munson AD. Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecol Evol. 2017;7:7965–7974. doi: 10.1002/ece3.3313. PubMed DOI PMC
Kiss K. Analysis of red clay soils of the Aggtelek karst (in the catchment area of Béke cave) Karstdevelopment. 2012;17:89–103.
Knáb M, Szili-Kovács T, Kiss K, Palatinszky M, Márialigeti K, Móga J, Borsodi A. Comparison of soil microbial communities from two distinct karst areas in Hungary. Acta Microbiol Immunol Hung. 2012;59:91–105. doi: 10.1556/AMicr.59.2012.1.10. PubMed DOI
Lane DJ. Nucleic acid techniques in bacterial systematics. Chichester: Wiley; 1991. 16S/23S rRNA Sequencing; pp. 115–175.
Li L, Wang D, Liu X, Zhang B, Liu Y, Xie T, du Y, Pan G. Soil organic carbon fractions and microbial community and functions under changes in vegetation: a case of vegetation succession in karst forest. Environ Earth Sci. 2014;71:3727–3735. doi: 10.1007/s12665-013-2767-3. DOI
Lian B, Chen Y, Zhu L, Yang R. Effect of microbial weathering on carbonate rocks. Earth Sci Front. 2008;15:90–99. doi: 10.1016/S1872-5791(09)60009-9. DOI
Móga J, Kiss K, Szabó M, et al. Hazards and landscape changes (degradations) on Hungarian karst mountains due to natural and human effects. J Mt Sci. 2013;10:16–28. doi: 10.1007/s11629-013-2400-7. DOI
Mulec J, Krištůfek V, Chroňáková A (2012) Monitoring of microbial indicator groups in caves through the use of RIDA®COUNT kits. Acta Carsol 41. 10.3986/ac.v41i2-3.565
Nazaries L, Tottey W, Robinson L, Khachane A, al-Soud WA, Sørensen S, Singh BK. Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biol Biochem. 2015;89:123–134. doi: 10.1016/j.soilbio.2015.06.027. DOI
Nielsen UN, Ayres E, Wall DH, Bardgett RD. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur J Soil Sci. 2011;62:105–116. doi: 10.1111/j.1365-2389.2010.01314.x. DOI
Nielsen JW, Jordan FL, Maier RM. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. J Microbiol Methods. 2013;92:256–263. doi: 10.1016/j.mimet.2012.12.021. PubMed DOI PMC
Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol. 1996;178:5636–5643. doi: 10.1128/JB.178.19.5636-5643.1996. PubMed DOI PMC
Oksanen J, Blanchet FG, Friendly M, et al (2018) Vegan: community ecology package. Version 2.5-2URL https://cran.r-project.org/web/packages/vegan/index.html. Accessed 17 May 2018
Orlewska K, Piotrowska-Seget Z, Cycoń M. Use of the PCR-DGGE method for the analysis of the bacterial community structure in soil treated with the cephalosporin antibiotic cefuroxime and/or inoculated with a multidrug-resistant Pseudomonas putida strain MC1. Front Microbiol. 2018;9:1384. doi: 10.3389/fmicb.2018.01387. PubMed DOI PMC
Orlewska K, Piotrowska-Seget Z, Bratosiewicz-Wąsik J, Cycoń M. Characterization of bacterial diversity in soil contaminated with the macrolide antibiotic erythromycin and/or inoculated with a multidrug-resistant Raoultella sp. strain using the PCR-DGGE approach. Appl Soil Ecol. 2018;126:57–64. doi: 10.1016/j.apsoil.2018.02.019. DOI
Peres-Neto PR, Jackson DA. How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the Mantel test. Oecologia. 2001;129:169–178. doi: 10.1007/s004420100720. PubMed DOI
Phillips JD. Biogeomorphology and contingent ecosystem engineering in karst landscapes. Prog Phys Geogr. 2016;40:503–526. doi: 10.1177/0309133315624641. DOI
R Core Team . A language and environment for statistical computing. Version 3.5.0. Vienna: R Foundation for Statistical Computing; 2018.
Stagniari F, Perpetuini G, Tofala R, Campanelli G, Leteo F, Della Vella U, Schirone M, Suzzi G, Pisante M. Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses. Front Microbiol. 2014;5:644. doi: 10.3389/fmicb.2014.00644. PubMed DOI PMC
Turner S, Pryer KM, Miao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999;46:327–338. doi: 10.1111/j.1550-7408.1999.tb04612.x. PubMed DOI
Vu VQ (2011) ggbiplot: a ggplot2 based biplot. Version 0.55URL http://github.com/vqv/ggbiplot
Wakelin S, Lombi E, Donner E, MacDonald L, Black A, O’Callaghan M. Application of MicroResp™ for soil ecotoxicology. Environ Pollut. 2013;179:177–184. doi: 10.1016/j.envpol.2013.04.010. PubMed DOI
Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Roux XL. Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol. 2006;8:2162–2169. doi: 10.1111/j.1462-2920.2006.01098.x. PubMed DOI
Williams PW. The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol. 2008;37:1–10. doi: 10.5038/1827-806X.37.1.1. DOI
Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, Duan Y, Engel AS. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front Microbiol. 2016;7:1955. doi: 10.3389/fmicb.2016.01955. PubMed DOI PMC
Zhang P, Li L, Pan G, Ren J. Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China. Environ Geol. 2006;51:609–619. doi: 10.1007/s00254-006-0356-4. DOI
Zhu H, He X, Wang K, Su Y, Wu J. Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a karst ecosystem. Eur J Soil Biol. 2012;51:1–7. doi: 10.1016/j.ejsobi.2012.03.003. DOI