Unmapped RNA Virus Diversity in Termites and their Symbionts

. 2020 Oct 09 ; 12 (10) : . [epub] 20201009

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33050289

Despite their ecological importance, nothing is known about the diversity and abundance of RNA viruses in termites (Termitoidae). We used a metatranscriptomics approach to determine the RNA virome structure of 50 diverse species of termite that differ in both phylogenetic position and colony composition. From these samples, we identified 67 novel RNA viruses, characterized their genomes, quantified their abundance and inferred their evolutionary history. These viruses were found within or similar to those from the Togaviridae, Iflaviridae, Polycipiviridae, Flaviviridae, Leviviridae, Narnaviridae, Mitoviridae, Lispivirdae, Phasmaviridae, Picobirnaviridae and Partitiviridae. However, all viruses identified were novel and divergent, exhibiting only 20% to 45% amino acid identity to previously identified viruses. Our analysis suggested that 17 of the viruses identified were termite-infecting, with the remainder likely associated with the termite microbiome or diet. Unclassified sobemo-like and bunya-like viruses dominated termite viromes, while most of the phylogenetic diversity was provided by the picobirna- and mitovirus-like viruses. Of note was the identification of a novel flavi-like virus most closely related to those found in marine vertebrates and invertebrates. Notably, the sampling procedure had the strongest association with virome composition, with greater RNA virome diversity in libraries prepared from whole termite bodies than those that only sampled heads.

Zobrazit více v PubMed

Mora C., Tittensor D.P., Adl S., Simpson A.G., Worm B. How many species are there on earth and in the ocean? PLoS Biol. 2011;9:e1001127. doi: 10.1371/journal.pbio.1001127. PubMed DOI PMC

RefSeq Genome Database. [(accessed on 23 August 2020)]; Available online: https://ncbi.nlm.nih.gov/genome/viruses/

Li C.-X., Shi M., Tian J.-H., Lin X.-D., Kang Y.-J., Chen L.-J., Qin X.-C., Xu J., Holmes E.C., Zhang Y.-Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife. 2015;4:e05378. doi: 10.7554/eLife.05378. PubMed DOI PMC

Shi M., Lin X.-D., Tian J.-H., Chen L.-J., Chen X., Li C.-X., Qin X.-C., Li J., Cao J.-P., Eden J.-S., et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539. doi: 10.1038/nature20167. PubMed DOI

Krishna K., Grimaldi D.A., Krishna V., Engel M.S. Treatise on the isoptera of the world: Termitidae. Bull. Am. Mus. Nat. Hist. 2013;523:973–1495. doi: 10.1206/377.4. DOI

Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Micro. 2014;12:168. doi: 10.1038/nrmicro3182. PubMed DOI

Bucek A., Šobotník J., He S., Shi M., Mcmahon D.P., Holmes E.C., Roisin Y., Lo N., Bourguignon T. Evolution of termite symbiosis informed by transcriptome–based phylogenies. Curr. Biol. 2019;29:3728–3734. doi: 10.1016/j.cub.2019.08.076. PubMed DOI

Tikhe C.V., Husseneder C. Metavirome sequencing of the termite gut reveals the presence of an unexplored bacteriophage community. Front. Microbiol. 2018;8:2548. doi: 10.3389/fmicb.2017.02548. PubMed DOI PMC

Altizer S., Nunn C.L., Thrall P.H., Gittleman J.L., Antonovics J., Cunningham A.A., Dobson A.P., Ezenwa V., Jones K.E., Pedersen A.B., et al. Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst. 2003;34:517–547. doi: 10.1146/annurev.ecolsys.34.030102.151725. DOI

Pie M.R., Rosengaus R.B., Traniello J.F. Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J. Theol. Biol. 2004;226:45–51. doi: 10.1016/j.jtbi.2003.08.002. PubMed DOI

Manley R., Boots M., Wilfert L. Review: Emerging viral disease risk to pollinating insects: Ecological, evolutionary and anthropogenic factors. J. Appl. Ecol. 2015;52:331–340. doi: 10.1111/1365-2664.12385. PubMed DOI PMC

Schoonvaere K., Smagghe G., Francis F., de Graaf D.C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 2018;9:177. doi: 10.3389/fmicb.2018.00177. PubMed DOI PMC

Beaurepaire A., Piot N., Doublet V., Antunez K., Campbell E., Chantawannakul P., Chejanovsky N., Gajda A., Heerman M., Panziera D., et al. Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects. 2020;11:239. doi: 10.3390/insects11040239. PubMed DOI PMC

Remnant E.J., Shi M., Buchmann G., Blacquière T., Holmes E.C., Beekman M., Ashe A. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 2017;91:e00158-e17. doi: 10.1128/JVI.00158-17. PubMed DOI PMC

Yanez O., Piot N., Dalmon A., de Miranda J., Chantawannakul P., Panziera D., Amiri E., Smagghe G., Schroeder D., Chejanovsky N. Bee viruses: Routes of infection in hymenoptera. Front. Microbiol. 2020;11:943. doi: 10.3389/fmicb.2020.00943. PubMed DOI PMC

Chouvenc T., Mullins A.J., Efstathion C.A., Su N.-Y. Virus-like symptoms in a termite (isoptera: Kalotermitidae) field colony. Fla. Entomol. 2013;96:1612–1614. doi: 10.1653/024.096.0450. DOI

Levin D.B., Adachi D., Williams L.L., Myles T.G. Host specificity and molecular characterization of the Entomopoxvirus of the lesser migratory grasshopper, Melanoplus sanguinipes. J. Invertebr. Pathol. 1993;62:241–247. doi: 10.1006/jipa.1993.1106. DOI

Al Fazairy A.A., Hassan F.A. Infection of termites by spodoptera littoralis nuclear polyhedrosis virus. Int. J. Trop. Insect Sci. 1988;9:37–39. doi: 10.1017/S1742758400009991. DOI

Pramono A.K., Kuwahara H., Itoh T., Toyoda A., Yamada A., Hongoh Y. Discovery and complete genome sequence of a bacteriophage from an obligate intracellular symbiont of a cellulolytic protist in the termite gut. Microbes Environ. 2017;32:112–117. doi: 10.1264/jsme2.ME16175. PubMed DOI PMC

Rosario K., Mettel K.A., Benner B.E., Johnson R., Scott C., Yusseff-Vanegas S.Z., Baker C.C.M., Cassill D.L., Storer C., Varsani A., et al. Virus discovery in all three major lineages of terrestrial arthropods highlights the diversity of single-stranded DNA viruses associated with invertebrates. PeerJ. 2018;6:e5761. doi: 10.7717/peerj.5761. PubMed DOI PMC

Kerr M., Rosario K., Baker C.C.M., Breitbart M. Discovery of four novel circular single-stranded DNA viruses in fungus-farming termites. Genome Announc. 2018;6:e00318-18. doi: 10.1128/genomeA.00318-18. PubMed DOI PMC

Käfer S., Paraskevopoulou S., Zirkel F., Wieseke N., Donath A., Petersen M., Jones T.C., Liu S., Zhou X., Middendorf M., et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog. 2019;15:e1008224. doi: 10.1371/journal.ppat.1008224. PubMed DOI PMC

Kapelinskaya T.V., Martynova E.U., Korolev A.L., Schal C., Mukha D.V. Transcription of the German cockroach densovirus BgDNV genome: Alternative processing of viral RNAs. Dokl. Biochem. Biophys. 2008;421:176–180. doi: 10.1134/S1607672908040042. PubMed DOI

Mukha D.V., Chumachenko A.G., Dykstra M.J., Kurtti T.J., Schal C. Characterization of a new densovirus infecting the German cockroach, Blattella germanica. J. Gen. Virol. 2006;87:1567–1575. doi: 10.1099/vir.0.81638-0. PubMed DOI

Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. Blast+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Marchler-Bauer A., Bryant S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004;32:327–331. doi: 10.1093/nar/gkh454. PubMed DOI PMC

Besemer J., Lomsadze A., Borodovsky M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–2618. doi: 10.1093/nar/29.12.2607. PubMed DOI PMC

Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI

Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI

Yu G., Lam T.T., Zhu H., Guan Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 2018;35:3041–3043. doi: 10.1093/molbev/msy194. PubMed DOI PMC

Revell L.J. Phytools: An R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. [(accessed on 7 October 2020)];2019 Available online: https://CRAN.R-project.org/package=vegan.

McMurdie P.J., Holmes S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016. [(accessed on 7 October 2020)]. Available online: https://ggplot2.tidyverse.org.

Harvey E., Rose K., Eden J.-S., Lo N., Abeyasuriya T., Shi M., Doggett S.L., Holmes E.C. Extensive diversity of RNA viruses in australian ticks. J. Virol. 2019;93:e01358-18. doi: 10.1128/JVI.01358-18. PubMed DOI PMC

Olendraite I., Brown K., Valles S.M., Firth A.E., Chen Y., Guérin D.M., Hashimoto Y., Herrero S., de Miranda J.R., Ryabov E., et al. ICTV virus taxonomy profile: Polycipiviridae. J. Gen. Virol. 2019;100:554. doi: 10.1099/jgv.0.001241. PubMed DOI PMC

Shackelton L.A., Holmes E.C. The role of alternative genetic codes in viral evolution and emergence. J. Theor. Biol. 2008;254:128–134. doi: 10.1016/j.jtbi.2008.05.024. PubMed DOI

Nibert M.L., Vong M., Fugate K.K., Debat H.J. Evidence for contemporary plant mitoviruses. Virology. 2018;518:14–24. doi: 10.1016/j.virol.2018.02.005. PubMed DOI PMC

Maes P., Adkins S., Alkhovsky S.V., Avšič-Županc T., Ballinger M.J., Bente D.A., Beer M., Bergeron É., Blair C.D., Briese T., et al. Taxonomy of the order bunyavirales: Second update 2018. Arch. Virol. 2019;164:927–941. doi: 10.1007/s00705-018-04127-3. PubMed DOI PMC

Yinda C.K., Vanhulle E., Conceição-Neto N., Beller L., Deboutte W., Shi C., Ghogomu S.M., Maes P., Van Ranst M., Matthijnssens J. Gut virome analysis of cameroonians reveals high diversity of enteric viruses, including potential interspecies transmitted viruses. mSphere. 2019;4:e00585-18. doi: 10.1128/mSphere.00585-18. PubMed DOI PMC

Krishnamurthy S.R., Wang D. Extensive conservation of prokaryotic ribosomal binding sites in known and novel picobirnaviruses. Virology. 2018;516:108–114. doi: 10.1016/j.virol.2018.01.006. PubMed DOI

Viljakainen L., Borshagovski A.M., Saarenpää S., Kaitala A., Jurvansuu J. Identification and characterisation of common glow-worm RNA viruses. Virus Genes. 2020;56:236–248. doi: 10.1007/s11262-019-01724-5. PubMed DOI PMC

Harvey E., Rose K., Eden J.-S., Lawrence A., Doggett S.L., Holmes E.C. Identification of diverse arthropod associated viruses in native australian fleas. Virology. 2019;535:189–199. doi: 10.1016/j.virol.2019.07.010. PubMed DOI

Debat H.J. An RNA virome associated to the golden orb-weaver spider Nephila clavipes. Front. Microbiol. 2017;8:2097. doi: 10.3389/fmicb.2017.02097. PubMed DOI PMC

Liu Y., Shen D., Zhou F., Wang G., An C. Identification of immunity-related genes in Ostrinia furnacalis against entomopathogenic fungi by RNA-seq analysis. PLoS ONE. 2014;9:e86436. PubMed PMC

Carter J.M., Baker S.C., Pink R., Carter D.R., Collins A., Tomlin J., Gibbs M., Breuker C.J. Unscrambling butterfly oogenesis. BMC Genom. 2013;14:283. doi: 10.1186/1471-2164-14-283. PubMed DOI PMC

Martínez L.C., Masachessi G., Carruyo G., Ferreyra L.J., Barril P.A., Isa M.B., Giordano M.O., Ludert J.E., Nates S.V. Picobirnavirus causes persistent infection in pigs. Infect. Genet. Evol. 2010;10:984–988. doi: 10.1016/j.meegid.2010.06.004. PubMed DOI

Starr E.P., Nuccio E.E., Pett-Ridge J., Banfield J.F., Firestone M.K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl. Acad. Sci. USA. 2019;116:25900–25908. doi: 10.1073/pnas.1908291116. PubMed DOI PMC

Parry R., Asgari S. Discovery of novel crustacean and cephalopod flaviviruses: Insights into the evolution and circulation of flaviviruses between marine invertebrate and vertebrate Hosts. J. Virol. 2019;93:e00432-e19. doi: 10.1128/JVI.00432-19. PubMed DOI PMC

Bourguignon T., Lo N., Dietrich C., Šobotník J., Sidek S., Roisin Y., Brune A., Evans T.A. Rampant host switching shaped the termite gut microbiome. Curr. Biol. 2018;28:649–654. doi: 10.1016/j.cub.2018.01.035. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...