Unmapped RNA Virus Diversity in Termites and their Symbionts
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33050289
PubMed Central
PMC7650761
DOI
10.3390/v12101145
PII: v12101145
Knihovny.cz E-zdroje
- Klíčová slova
- RNA sequencing, RNA viruses, ecology, evolution, metatranscriptomics, termites,
- MeSH
- genetická variace MeSH
- genom virový genetika MeSH
- Isoptera virologie MeSH
- RNA virová genetika MeSH
- RNA-viry klasifikace genetika izolace a purifikace MeSH
- virom genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA virová MeSH
Despite their ecological importance, nothing is known about the diversity and abundance of RNA viruses in termites (Termitoidae). We used a metatranscriptomics approach to determine the RNA virome structure of 50 diverse species of termite that differ in both phylogenetic position and colony composition. From these samples, we identified 67 novel RNA viruses, characterized their genomes, quantified their abundance and inferred their evolutionary history. These viruses were found within or similar to those from the Togaviridae, Iflaviridae, Polycipiviridae, Flaviviridae, Leviviridae, Narnaviridae, Mitoviridae, Lispivirdae, Phasmaviridae, Picobirnaviridae and Partitiviridae. However, all viruses identified were novel and divergent, exhibiting only 20% to 45% amino acid identity to previously identified viruses. Our analysis suggested that 17 of the viruses identified were termite-infecting, with the remainder likely associated with the termite microbiome or diet. Unclassified sobemo-like and bunya-like viruses dominated termite viromes, while most of the phylogenetic diversity was provided by the picobirna- and mitovirus-like viruses. Of note was the identification of a novel flavi-like virus most closely related to those found in marine vertebrates and invertebrates. Notably, the sampling procedure had the strongest association with virome composition, with greater RNA virome diversity in libraries prepared from whole termite bodies than those that only sampled heads.
Faculty of Tropical AgriSciences Czech University of Life Sciences 165 00 Prague Czech Republic
School of Medical Sciences The University of Sydney Sydney 2006 New South Wales Australia
Zobrazit více v PubMed
Mora C., Tittensor D.P., Adl S., Simpson A.G., Worm B. How many species are there on earth and in the ocean? PLoS Biol. 2011;9:e1001127. doi: 10.1371/journal.pbio.1001127. PubMed DOI PMC
RefSeq Genome Database. [(accessed on 23 August 2020)]; Available online: https://ncbi.nlm.nih.gov/genome/viruses/
Li C.-X., Shi M., Tian J.-H., Lin X.-D., Kang Y.-J., Chen L.-J., Qin X.-C., Xu J., Holmes E.C., Zhang Y.-Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife. 2015;4:e05378. doi: 10.7554/eLife.05378. PubMed DOI PMC
Shi M., Lin X.-D., Tian J.-H., Chen L.-J., Chen X., Li C.-X., Qin X.-C., Li J., Cao J.-P., Eden J.-S., et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539. doi: 10.1038/nature20167. PubMed DOI
Krishna K., Grimaldi D.A., Krishna V., Engel M.S. Treatise on the isoptera of the world: Termitidae. Bull. Am. Mus. Nat. Hist. 2013;523:973–1495. doi: 10.1206/377.4. DOI
Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Micro. 2014;12:168. doi: 10.1038/nrmicro3182. PubMed DOI
Bucek A., Šobotník J., He S., Shi M., Mcmahon D.P., Holmes E.C., Roisin Y., Lo N., Bourguignon T. Evolution of termite symbiosis informed by transcriptome–based phylogenies. Curr. Biol. 2019;29:3728–3734. doi: 10.1016/j.cub.2019.08.076. PubMed DOI
Tikhe C.V., Husseneder C. Metavirome sequencing of the termite gut reveals the presence of an unexplored bacteriophage community. Front. Microbiol. 2018;8:2548. doi: 10.3389/fmicb.2017.02548. PubMed DOI PMC
Altizer S., Nunn C.L., Thrall P.H., Gittleman J.L., Antonovics J., Cunningham A.A., Dobson A.P., Ezenwa V., Jones K.E., Pedersen A.B., et al. Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst. 2003;34:517–547. doi: 10.1146/annurev.ecolsys.34.030102.151725. DOI
Pie M.R., Rosengaus R.B., Traniello J.F. Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J. Theol. Biol. 2004;226:45–51. doi: 10.1016/j.jtbi.2003.08.002. PubMed DOI
Manley R., Boots M., Wilfert L. Review: Emerging viral disease risk to pollinating insects: Ecological, evolutionary and anthropogenic factors. J. Appl. Ecol. 2015;52:331–340. doi: 10.1111/1365-2664.12385. PubMed DOI PMC
Schoonvaere K., Smagghe G., Francis F., de Graaf D.C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 2018;9:177. doi: 10.3389/fmicb.2018.00177. PubMed DOI PMC
Beaurepaire A., Piot N., Doublet V., Antunez K., Campbell E., Chantawannakul P., Chejanovsky N., Gajda A., Heerman M., Panziera D., et al. Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects. 2020;11:239. doi: 10.3390/insects11040239. PubMed DOI PMC
Remnant E.J., Shi M., Buchmann G., Blacquière T., Holmes E.C., Beekman M., Ashe A. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 2017;91:e00158-e17. doi: 10.1128/JVI.00158-17. PubMed DOI PMC
Yanez O., Piot N., Dalmon A., de Miranda J., Chantawannakul P., Panziera D., Amiri E., Smagghe G., Schroeder D., Chejanovsky N. Bee viruses: Routes of infection in hymenoptera. Front. Microbiol. 2020;11:943. doi: 10.3389/fmicb.2020.00943. PubMed DOI PMC
Chouvenc T., Mullins A.J., Efstathion C.A., Su N.-Y. Virus-like symptoms in a termite (isoptera: Kalotermitidae) field colony. Fla. Entomol. 2013;96:1612–1614. doi: 10.1653/024.096.0450. DOI
Levin D.B., Adachi D., Williams L.L., Myles T.G. Host specificity and molecular characterization of the Entomopoxvirus of the lesser migratory grasshopper, Melanoplus sanguinipes. J. Invertebr. Pathol. 1993;62:241–247. doi: 10.1006/jipa.1993.1106. DOI
Al Fazairy A.A., Hassan F.A. Infection of termites by spodoptera littoralis nuclear polyhedrosis virus. Int. J. Trop. Insect Sci. 1988;9:37–39. doi: 10.1017/S1742758400009991. DOI
Pramono A.K., Kuwahara H., Itoh T., Toyoda A., Yamada A., Hongoh Y. Discovery and complete genome sequence of a bacteriophage from an obligate intracellular symbiont of a cellulolytic protist in the termite gut. Microbes Environ. 2017;32:112–117. doi: 10.1264/jsme2.ME16175. PubMed DOI PMC
Rosario K., Mettel K.A., Benner B.E., Johnson R., Scott C., Yusseff-Vanegas S.Z., Baker C.C.M., Cassill D.L., Storer C., Varsani A., et al. Virus discovery in all three major lineages of terrestrial arthropods highlights the diversity of single-stranded DNA viruses associated with invertebrates. PeerJ. 2018;6:e5761. doi: 10.7717/peerj.5761. PubMed DOI PMC
Kerr M., Rosario K., Baker C.C.M., Breitbart M. Discovery of four novel circular single-stranded DNA viruses in fungus-farming termites. Genome Announc. 2018;6:e00318-18. doi: 10.1128/genomeA.00318-18. PubMed DOI PMC
Käfer S., Paraskevopoulou S., Zirkel F., Wieseke N., Donath A., Petersen M., Jones T.C., Liu S., Zhou X., Middendorf M., et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog. 2019;15:e1008224. doi: 10.1371/journal.ppat.1008224. PubMed DOI PMC
Kapelinskaya T.V., Martynova E.U., Korolev A.L., Schal C., Mukha D.V. Transcription of the German cockroach densovirus BgDNV genome: Alternative processing of viral RNAs. Dokl. Biochem. Biophys. 2008;421:176–180. doi: 10.1134/S1607672908040042. PubMed DOI
Mukha D.V., Chumachenko A.G., Dykstra M.J., Kurtti T.J., Schal C. Characterization of a new densovirus infecting the German cockroach, Blattella germanica. J. Gen. Virol. 2006;87:1567–1575. doi: 10.1099/vir.0.81638-0. PubMed DOI
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. Blast+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Marchler-Bauer A., Bryant S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004;32:327–331. doi: 10.1093/nar/gkh454. PubMed DOI PMC
Besemer J., Lomsadze A., Borodovsky M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–2618. doi: 10.1093/nar/29.12.2607. PubMed DOI PMC
Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Yu G., Lam T.T., Zhu H., Guan Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 2018;35:3041–3043. doi: 10.1093/molbev/msy194. PubMed DOI PMC
Revell L.J. Phytools: An R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. [(accessed on 7 October 2020)];2019 Available online: https://CRAN.R-project.org/package=vegan.
McMurdie P.J., Holmes S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016. [(accessed on 7 October 2020)]. Available online: https://ggplot2.tidyverse.org.
Harvey E., Rose K., Eden J.-S., Lo N., Abeyasuriya T., Shi M., Doggett S.L., Holmes E.C. Extensive diversity of RNA viruses in australian ticks. J. Virol. 2019;93:e01358-18. doi: 10.1128/JVI.01358-18. PubMed DOI PMC
Olendraite I., Brown K., Valles S.M., Firth A.E., Chen Y., Guérin D.M., Hashimoto Y., Herrero S., de Miranda J.R., Ryabov E., et al. ICTV virus taxonomy profile: Polycipiviridae. J. Gen. Virol. 2019;100:554. doi: 10.1099/jgv.0.001241. PubMed DOI PMC
Shackelton L.A., Holmes E.C. The role of alternative genetic codes in viral evolution and emergence. J. Theor. Biol. 2008;254:128–134. doi: 10.1016/j.jtbi.2008.05.024. PubMed DOI
Nibert M.L., Vong M., Fugate K.K., Debat H.J. Evidence for contemporary plant mitoviruses. Virology. 2018;518:14–24. doi: 10.1016/j.virol.2018.02.005. PubMed DOI PMC
Maes P., Adkins S., Alkhovsky S.V., Avšič-Županc T., Ballinger M.J., Bente D.A., Beer M., Bergeron É., Blair C.D., Briese T., et al. Taxonomy of the order bunyavirales: Second update 2018. Arch. Virol. 2019;164:927–941. doi: 10.1007/s00705-018-04127-3. PubMed DOI PMC
Yinda C.K., Vanhulle E., Conceição-Neto N., Beller L., Deboutte W., Shi C., Ghogomu S.M., Maes P., Van Ranst M., Matthijnssens J. Gut virome analysis of cameroonians reveals high diversity of enteric viruses, including potential interspecies transmitted viruses. mSphere. 2019;4:e00585-18. doi: 10.1128/mSphere.00585-18. PubMed DOI PMC
Krishnamurthy S.R., Wang D. Extensive conservation of prokaryotic ribosomal binding sites in known and novel picobirnaviruses. Virology. 2018;516:108–114. doi: 10.1016/j.virol.2018.01.006. PubMed DOI
Viljakainen L., Borshagovski A.M., Saarenpää S., Kaitala A., Jurvansuu J. Identification and characterisation of common glow-worm RNA viruses. Virus Genes. 2020;56:236–248. doi: 10.1007/s11262-019-01724-5. PubMed DOI PMC
Harvey E., Rose K., Eden J.-S., Lawrence A., Doggett S.L., Holmes E.C. Identification of diverse arthropod associated viruses in native australian fleas. Virology. 2019;535:189–199. doi: 10.1016/j.virol.2019.07.010. PubMed DOI
Debat H.J. An RNA virome associated to the golden orb-weaver spider Nephila clavipes. Front. Microbiol. 2017;8:2097. doi: 10.3389/fmicb.2017.02097. PubMed DOI PMC
Liu Y., Shen D., Zhou F., Wang G., An C. Identification of immunity-related genes in Ostrinia furnacalis against entomopathogenic fungi by RNA-seq analysis. PLoS ONE. 2014;9:e86436. PubMed PMC
Carter J.M., Baker S.C., Pink R., Carter D.R., Collins A., Tomlin J., Gibbs M., Breuker C.J. Unscrambling butterfly oogenesis. BMC Genom. 2013;14:283. doi: 10.1186/1471-2164-14-283. PubMed DOI PMC
Martínez L.C., Masachessi G., Carruyo G., Ferreyra L.J., Barril P.A., Isa M.B., Giordano M.O., Ludert J.E., Nates S.V. Picobirnavirus causes persistent infection in pigs. Infect. Genet. Evol. 2010;10:984–988. doi: 10.1016/j.meegid.2010.06.004. PubMed DOI
Starr E.P., Nuccio E.E., Pett-Ridge J., Banfield J.F., Firestone M.K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl. Acad. Sci. USA. 2019;116:25900–25908. doi: 10.1073/pnas.1908291116. PubMed DOI PMC
Parry R., Asgari S. Discovery of novel crustacean and cephalopod flaviviruses: Insights into the evolution and circulation of flaviviruses between marine invertebrate and vertebrate Hosts. J. Virol. 2019;93:e00432-e19. doi: 10.1128/JVI.00432-19. PubMed DOI PMC
Bourguignon T., Lo N., Dietrich C., Šobotník J., Sidek S., Roisin Y., Brune A., Evans T.A. Rampant host switching shaped the termite gut microbiome. Curr. Biol. 2018;28:649–654. doi: 10.1016/j.cub.2018.01.035. PubMed DOI