Asset maintenance optimisation approaches in the chemical and process industries - A review
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33052158
PubMed Central
PMC7543700
DOI
10.1016/j.cherd.2020.09.034
PII: S0263-8762(20)30498-6
Knihovny.cz E-zdroje
- Klíčová slova
- Asset lifecycle analysis, Asset maintenance management, Chemical process, Integrated chemical sites, Maintenance scheduling, Reliability optimisation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The operational performance of a chemical process plant highly depends on the assets' condition and maintenance practices. As chemical processes are highly complex systems, increasing the risk frequencies and their interactions, the maintenance planning becomes crucial for stable operation. This paper provides a critical analysis of the recently developed approaches for asset maintenance approaches in the chemical industry. The strategies include corrective maintenance, time-based, risk-based, condition-based and opportunistic maintenance. Various methods on selecting the optimal maintenance strategy are discussed as well. This paper also evaluates reliability issues in chemical plants and integrated sites encompassing the maintenance optimisation. Several directions for potential future improvements are proposed based on this analysis, as follows: (i) potential study of exploiting production or other opportunities to postpone or conduct earlier maintenance; (ii) joint optimisation of spare part ordering strategy and data-driven maintenance planning study is needed; (iii) fault propagation modelling of structural dependent units to facilitate proper maintenance planning; (iv) a framework or tool that consider quantitative and qualitative time-variant data inputs is lacking for business-informed asset maintenance.
Zobrazit více v PubMed
Aguirre A.M., Papageorgiou L.G. Resource-constrained formulation for production scheduling and maintenance. In: Espuña A., Graells M., Puigjaner L., editors. Computer Aided Chemical Engineering, 27 European Symposium on Computer Aided Process Engineering. Elsevier; 2017. pp. 1375–1380. DOI
Ahmad R., Kamaruddin S. An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 2012;63:135–149. doi: 10.1016/j.cie.2012.02.002. DOI
Ahmed Q., Moghaddam K.S., Raza S.A., Khan F.I. A multi-constrained maintenance scheduling optimization model for a hydrocarbon processing facility. Proc. IMechE. 2015;229:151–168. doi: 10.1177/1748006X15573166. DOI
Ahuja I., Khamba J. Total productive maintenance implementation in a manufacturing organisation. Int. J. Prod. Qual. Manage. 2008;3 doi: 10.1504/IJPQM.2008.017504. DOI
Ajukumar V.N., Gandhi O.P. Evaluation of green maintenance initiatives in design and development of mechanical systems using an integrated approach. J. Clean. Prod. 2013;51:34–46. doi: 10.1016/j.jclepro.2013.01.010. DOI
Alebrant Mendes A., Weber Lorenzoni M. Analysis and optimization of periodic inspection intervals in cold standby systems using Monte Carlo simulation. J. Manuf. Syst. 2018;49:121–130. doi: 10.1016/j.jmsy.2018.09.006. DOI
Al-Najjar B. Total quality maintenance: an approach for continuous reduction in costs of quality products. J. Qual. Mainten. Eng. 1996;2:4–20. doi: 10.1108/13552519610130413. DOI
Al-Najjar B. 1997. Condition-Based Maintenance: Selection and Improvement of a Cost-Effective Vibration-Based Maintenance Policy for Rolling element Bearings, Condition-Based Maintenance.
Al-Najjar B., Alsyouf I. Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making. Int. J. Prod. Econ. 2003;84:85–100. doi: 10.1016/S0925-5273(02)00380-8. DOI
Alrabghi A., Tiwari A. State of the art in simulation-based optimisation for maintenance systems. Comput. Ind. Eng. 2015;82:167–182. doi: 10.1016/j.cie.2014.12.022. DOI
Alrabghi A., Tiwari A., Savill M. Simulation-based optimisation of maintenance systems: industrial case studies. J. Manuf. Syst. 2017;44:191–206. doi: 10.1016/j.jmsy.2017.05.008. DOI
Amaran S., Sahinidis N., Sharda B., Morrison M., Bury S., Miller S., Wassick J. Long-term turnaround planning for integrated chemical sites. Comput. Chem. Eng. 2015;72 doi: 10.1016/j.compchemeng.2014.08.003. DOI
Amaran S., Zhang T., Sahinidis N.V., Sharda B., Bury S.J. Medium-term maintenance turnaround planning under uncertainty for integrated chemical sites. Comput. Chem. Eng. 2016;84:422–433. doi: 10.1016/j.compchemeng.2015.09.007. DOI
Aoki T., Kodama N., Takase K., Miya K. Study of the optimization of maintenance plan for nuclear power plants. EJAM. 2014;6:1–13.
Apeland S., Aven T. Risk based maintenance optimization: foundational issues. Reliab. Eng. Syst. Saf. 2000;67:285–292. doi: 10.1016/S0951-8320(99)00068-X. DOI
Aqlan F., Mustafa Ali E. Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. J. Loss Prev. Process Ind. 2014;29:39–48. doi: 10.1016/j.jlp.2014.01.006. DOI
Armitage C. 2015. Develop a Maintenance and Reliability Plan. < https://www.aiche.org/sites/default/files/cep/20150638.pdf> (accessed 10.04.20)
Arunraj N.S., Maiti J. Risk-based maintenance policy selection using AHP and goal programming. Saf. Sci. 2010;48:238–247. doi: 10.1016/j.ssci.2009.09.005. DOI
Arunraj N.S., Mandal S., Maiti J. Modeling uncertainty in risk assessment: an integrated approach with fuzzy set theory and Monte Carlo simulation. Accid. Anal. Prev. 2013;55:242–255. doi: 10.1016/j.aap.2013.03.007. PubMed DOI
Aviso K., Cayamanda C., Mayol A.P., Danielle S., Yu K. Optimizing human resource allocation in organizations during crisis conditions: a P-graph approach. Process Integr. Optim. Sustainab. 2017 doi: 10.1007/s41660-017-0004-3. DOI
Aviso K.B., Demeterio F.P.A., Lucas R.I.G., Tan R.R. P-graph approach to planning human resource expansion for universities in transition. Chem. Eng. Trans. 2018;1(70):277–282. doi: 10.3303/CET1870047. DOI
Ayo-Imoru R.M., Cilliers A.C. A survey of the state of condition-based maintenance (CBM) in the nuclear power industry. Ann. Nucl. Energy. 2018;112:177–188. doi: 10.1016/j.anucene.2017.10.010. DOI
Azadeh A., Abdolhossein Zadeh S. An integrated fuzzy analytic hierarchy process and fuzzy multiple-criteria decision-making simulation approach for maintenance policy selection. Simulation. 2016;92:3–18. doi: 10.1177/0037549715616686. DOI
BahooToroody A., Abaei M.M., Arzaghi E., BahooToroody F., De Carlo F., Abbassi R. Multi-level optimization of maintenance plan for natural gas system exposed to deterioration process. J. Hazard. Mater. 2019;362:412–423. doi: 10.1016/j.jhazmat.2018.09.044. PubMed DOI
Barbera F. LSU Historical Dissertations and Theses; 1994. Optimal Preventive Maintenance Strategies for a Production System Subject to Random Shocks.
Barua S., Gao X., Pasman H., Mannan M.S. Bayesian network based dynamic operational risk assessment. J. Loss Prev. Process Ind. 2016;41:399–410. doi: 10.1016/j.jlp.2015.11.024. DOI
Basri E.I., Abdul Razak I.H., Ab-Samat H., Kamaruddin S. Preventive maintenance (PM) planning: a review. J. Qual. Mainten. Eng. 2017;23:114–143. doi: 10.1108/JQME-04-2016-0014. DOI
Bayoumi A., McCaslin R. Internet of things – a predictive maintenance tool for general machinery, petrochemicals and water treatment. In: Bahei-El-Din Y., Hassan M., editors. Advanced Technologies for Sustainable Systems. Springer International Publishing; Cham: 2017. pp. 137–146. DOI
Ben Ali J., Fnaiech N., Saidi L., Chebel-Morello B., Fnaiech F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 2015;89:16–27. doi: 10.1016/j.apacoust.2014.08.016. DOI
Benjamin M.F.D. Multi-disruption criticality analysis in bioenergy-based eco-industrial parks via the P-graph approach. J. Clean. Prod. 2018;186:325–334. doi: 10.1016/j.jclepro.2018.03.130. DOI
Benjamin M.F.D., Cayamanda C.D., Tan R.R., Razon L.F. P-graph approach to criticality analysis in integrated bioenergy systems. Clean Technol. Environ. Policy. 2017;19:1841–1854. doi: 10.1007/s10098-017-1368-3. DOI
Benjamin M.F.D., Tan R.R., Razon L.F. A methodology for criticality analysis in integrated energy systems. Clean Technol. Environ. Policy. 2015;17:935–946. doi: 10.1007/s10098-014-0846-0. DOI
Benkedjouh T., Medjaher K., Zerhouni N., Rechak S. Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Eng. Appl. Artif. Intell. 2013;26:1751–1760. doi: 10.1016/j.engappai.2013.02.006. DOI
Bergman B. Optimal replacement under a general failure model. Adv. Appl. Probab. 1978;10:431–451. doi: 10.2307/1426944. DOI
Berrade M.D., Scarf P.A., Cavalcante C.A.V. A study of postponed replacement in a delay time model. Reliab. Eng. Syst. Saf. Mainten. Model. 2017;168:70–79. doi: 10.1016/j.ress.2017.04.006. DOI
Bertolini M., Bevilacqua M., Ciarapica F.E., Giacchetta G. Development of risk-based inspection and maintenance procedures for an oil refinery. J. Loss Prev. Process Ind. 2009;22:244–253. doi: 10.1016/j.jlp.2009.01.003. DOI
Besnard F., Patrikssont M., Strombergt A., Wojciechowskit A., Bertling L. An optimization framework for opportunistic maintenance of offshore wind power system. Presented at the 2009 IEEE Bucharest PowerTech. 2009 doi: 10.1109/PTC.2009.5281868. DOI
Bhandari J., Arzaghi E., Abbassi R., Garaniya V., Khan F. Dynamic risk-based maintenance for offshore processing facility. Process Saf. Prog. 2016;35:399–406. doi: 10.1002/prs.11829. DOI
Bjerga T., Aven T. Adaptive risk management using new risk perspectives – an example from the oil and gas industry. Reliab. Eng. Syst. Saf. 2015;134:75–82. doi: 10.1016/j.ress.2014.10.013. DOI
Bokinsky H., McKenzie A., Bayoumi A., McCaslin R.B., Patterson A., Matthews M., Schmidley J., Eisner M.L. 2013. Application of Natural Language Processing Techniques to Marine V-22 Maintenance Data for Populating a CBM-Oriented Database.
BS-EN-13306 Maintenance – maintenance terminology. Tech Rep. European Committee for Standardization; Brussels, Belgium; 2017.
Carlo F.D., Arleo M.A. Imperfect maintenance models, from theory to practice. Syst. Reliab. 2017 doi: 10.5772/intechopen.69286. DOI
Castro P.M., Grossmann I.E., Veldhuizen P., Esplin D. Optimal maintenance scheduling of a gas engine power plant using generalized disjunctive programming. AIChE J. 2014;60:2083–2097. doi: 10.1002/aic.14412. DOI
Cavalcante C.A.V., Lopes R.S. Multi-criteria model to support the definition of opportunistic maintenance policy: a study in a cogeneration system. Energy. 2015;80:32–40. doi: 10.1016/j.energy.2014.11.039. DOI
Charles A.-S., Floru I.-R., Azzaro-Pantel C., Pibouleau L., Domenech S. Optimization of preventive maintenance strategies in a multipurpose batch plant: application to semiconductor manufacturing. Comput. Chem. Eng. 2003;27:449–467. doi: 10.1016/S0098-1354(02)00216-8. DOI
Cheung K.-Y., Hui C.-W. Total-site maintenance scheduling. PRES 2001, 4th Conference on Process Integration, Modelling, and Optimisation for Energy Saving and Pollution Reduction; Florence, Italy; 2001. pp. 355–363.
Cheung K.-Y., Hui C.-W., Sakamoto H., Hirata K., O’Young L. Short-term site-wide maintenance scheduling. Comput. Chem. Eng. Escape. 2004;12(28):91–102. doi: 10.1016/S0098-1354(03)00177-7. DOI
Chin H.H., Varbanov P.S., Klemeš J.J. Short term maintenance tasks scheduling with pinch methodology. Chem. Eng. Trans. 2020;78:499–5041. doi: 10.3303/CET2078084. 78, 499-504. DOI
Chin H.H., Varbanov P.S., Klemeš J.J., Lam H.L. Application of Pinch Analysis to opportunistic maintenance management. Chem. Eng. Trans. 2019;76:535–540. doi: 10.3303/CET1976090. DOI
Cho S., Shin J.-H., Jun H.-B., Hwang H.-J., Ha C., Hwang J. A study on estimating the next failure time of compressor equipment in an offshore plant. Math. Probl. Eng. 2016;2016:1–14. doi: 10.1155/2016/8705796. DOI
Chouhan T.R. The unfolding of Bhopal disaster. J. Loss Prev. Process Ind. 2005;18:205–208. doi: 10.1016/j.jlp.2005.07.025. DOI
Christer A.H., Waller W.M. Reducing production downtime using delay-time analysis. J. Oper. Res. Soc. 1984;35:499–512. doi: 10.2307/2581797. DOI
Coats D., Cho K., Shin Y., Goodman N., Blechertas V., Bayoumi A.E. Advanced time–frequency mutual information measures for condition-based maintenance of helicopter drivetrains. IEEE Trans. Instrum. Meas. 2011;60:2984–2994. doi: 10.1109/TIM.2011.2122370. DOI
Cox D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B: Methodol. 1972;34:187–220.
Daher A., Hoblos G., Khalil M., Chetouani Y. New prognosis approach for preventive and predictive maintenance – application to a distillation column. Chem. Eng. Res. Des. 2020;153:162–174. doi: 10.1016/j.cherd.2019.10.029. DOI
Das A.N., Sarmah S.P. Preventive replacement models: an overview and their application in process industries. EJIE. 2010;4:280. doi: 10.1504/EJIE.2010.033332. DOI
de Jonge B., Scarf P.A. A review on maintenance optimization. Eur. J. Oper. Res. 2019 doi: 10.1016/j.ejor.2019.09.047. DOI
Dedopoulos I.T., Shah N. Preventive maintenance policy optimization for multipurpose plant equipment. Comput. Chem. Eng. 1995;19:693–698. doi: 10.1016/0098-1354(95)87116-0. DOI
Dekker R. Applications of maintenance optimization models: a review and analysis. Reliab. Eng. Syst. Saf. Mainten. Reliab. 1996;51:229–240. doi: 10.1016/0951-8320(95)00076-3. DOI
Demir L., Tunali S., Eliiyi D.T. The state of the art on buffer allocation problem: a comprehensive survey. J. Intell. Manuf. 2014;25:371–392. doi: 10.1007/s10845-012-0687-9. DOI
Dey P.k. A risk-based model for inspection and maintenance of cross-country petroleum pipeline. J. Qual. Mainten. Eng. 2001;7:25–43. doi: 10.1108/13552510110386874. DOI
Diaz-Bejarano E., Behranvand E., Coletti F., Mozdianfard M.R., Macchietto S. Organic and inorganic fouling in heat exchangers: industrial case study analysis of fouling rate. Ind. Eng. Chem. Res. 2019;58:228–246. doi: 10.1021/acs.iecr.8b04343. DOI
Diaz-Bejarano E., Coletti F., Macchietto S. Modeling and prediction of shell-side fouling in shell-and-tube heat exchangers. Heat Transf. Eng. 2018;0:1–17. doi: 10.1080/01457632.2018.1446814. DOI
Dow . 2019. Growth in Texas|Our History|Dow Corporate. < https://corporate.dow.com/en-us/about/history/freeport-texas-facility> (accessed 05.04.19)
Du M.Y. Application of virtual instrument technology in condition-based maintenance of chemical equipment. Chem. Eng. Trans. 2018;71:1291–1296. doi: 10.3303/CET1871216. DOI
Elhdad R., Chilamkurti N., Torabi T. An ontology-based framework for process monitoring and maintenance in petroleum plant. J. Loss Prev. Process Ind. 2013;26:104–116. doi: 10.1016/j.jlp.2012.10.001. DOI
Faccio M., Persona A., Sgarbossa F., Zanin G. Industrial maintenance policy development: a quantitative framework. Int. J. Prod. Econ. 2014;147:85–93. doi: 10.1016/j.ijpe.2012.08.018. DOI
Feili H.R., Akar N., Lotfizadeh H., Bairampour M., Nasiri S. Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique. Energy Convers. Manage. 2013;72:69–76. doi: 10.1016/j.enconman.2012.10.027. DOI
Feord D., Jakeman C., Shah N. Modelling multi-site production to optimise customer orders. Comput. Aided Chem. Eng. 2002:661–666. doi: 10.1016/S1570-7946(02)80138-9. DOI
García-Muñoz S., Macgregor J.F. 2016. Big Data: Success Stories in the Process Industries. < https://www.aiche.org/resources/publications/cep/2016/march/big-data-success-stories-process-industries> (accessed 20.04.20)
Ge Y., Xiao M., Yang Z., Zhang L., Hu Z., Feng D. An integrated logarithmic fuzzy preference programming based methodology for optimum maintenance strategies selection. Appl. Soft Comput. 2017;60:591–601. doi: 10.1016/j.asoc.2017.07.021. DOI
Gnoni M.G., Saleh J.H. Near-miss management systems and observability-in-depth: handling safety incidents and accident precursors in light of safety principles. Saf. Sci. 2017;91:154–167. doi: 10.1016/j.ssci.2016.08.012. DOI
Goel H.D., Grievink J., Weijnen M.P.C. Integrated optimal reliable design, production, and maintenance planning for multipurpose process plants. Comput. Chem. Eng. 2003;27:1543–1555. doi: 10.1016/S0098-1354(03)00090-5. DOI
Halimi D., Hafaifa A., Bouali E. Maintenance actions planning in industrial centrifugal compressor based on failure analysis. Eksploatacja i Niezawodnosc. 2014;16:17–21.
Hamedi M., Sharafi S., Delshad M.T. Optimization of preventive maintenance scheduling based on Monte Carlo simulation in processing plants. 15th Iran International Industrial Engineering Conference (IIIEC) 2019:293–296. doi: 10.1109/IIIEC.2019.8720622. DOI
Hameed A., Khan F. A framework to estimate the risk-based shutdown interval for a processing plant. J. Loss Prev. Process Ind. 2014;32:18–29. doi: 10.1016/j.jlp.2014.07.009. DOI
Hameed A., Khan F., Ahmed S. A risk-based shutdown inspection and maintenance interval estimation considering human error. Process Saf. Environ. Prot. 2016;100:9–21. doi: 10.1016/j.psep.2015.11.011. DOI
Hannu J., Backlund F. Can we make maintenance decisions on risk analysis results? J. Qual. Mainten. Eng. 2002;8:77–91. doi: 10.1108/13552510210420603. DOI
Harnly J.A. Risk based prioritization of maintenance repair work. Process Saf. Prog. 1998;17:32–38. doi: 10.1002/prs.680170108. DOI
Hezoucky F., Agence internationale de l’énergie atomique . International Atomic Energy Agency; Vienna, Austria: 2008. Application of Reliability Centred Maintenance to Optimize Operation and Maintenance in Nuclear Power Plants.
Hu H., Cheng G., Li Y., Tang Y. Risk-based maintenance strategy and its applications in a petrochemical reforming reaction system. J. Loss Prev. Process Ind. 2009;22:392–397. doi: 10.1016/j.jlp.2009.02.001. DOI
Huang R.-H., Yang C.-L., Kao C.-S. Assessment model for equipment risk management: petrochemical industry cases. Saf. Sci. 2012;50:1056–1066. doi: 10.1016/j.ssci.2010.02.024. DOI
Huynh K.T., Barros A., Bérenguer C. 2013. A Reliability-based Opportunistic Predictive Maintenance Model for k-out-of-n Deteriorating Systems. DOI
Idris M.M.M. King Fahd University of Petroleum and Minerals; Dhahran, Saudi Arabia: 2016. Turnaround Maintenance Planning for a Network of Plants Using Mathematical Programming Model (masters)
Iqbal H., Tesfamariam S., Haider H., Sadiq R. Inspection and maintenance of oil & gas pipelines: a review of policies. Struct. Infrastruct. Eng. 2017;13:794–815. doi: 10.1080/15732479.2016.1187632. DOI
Ishizaka A., Labib A. A hybrid and integrated approach to evaluate and prevent disasters. J. Oper. Res. Soc. 2014;65:1475–1489. doi: 10.1057/jors.2013.59. DOI
Jaderi F., Ibrahim Z.Z., Nikoo Mehdi, Nikoo Mohammad. Utilizing self-organization systems for modeling and managing risk based on maintenance and repair in petrochemical industries. Soft Comput. 2019;23:6379–6390. doi: 10.1007/s00500-018-3291-x. DOI
Jaderi F., Ibrahim Z.Z., Zahiri M.R. Criticality analysis of petrochemical assets using risk based maintenance and the fuzzy inference system. Process Saf. Environ. Prot. 2019;121:312–325. doi: 10.1016/j.psep.2018.11.005. DOI
Jain P., Pistikopoulos E.N., Mannan M.S. Process resilience analysis based data-driven maintenance optimization: application to cooling tower operations. Comput. Chem. Eng. 2019;121:27–45. doi: 10.1016/j.compchemeng.2018.10.019. DOI
Jeong I.-J., Leon V.J., Villalobos J.R. Integrated decision-support system for diagnosis, maintenance planning, and scheduling of manufacturing systems. Int. J. Prod. Res. 2007;45:267–285. doi: 10.1080/00207540600678896. DOI
Jiang R., Ji P. Age replacement policy: a multi-attribute value model. Reliab. Eng. Syst. Saf. 2002;76:311–318. doi: 10.1016/S0951-8320(02)00021-2. DOI
Jovanovic A. Risk-based inspection and maintenance in power and process plants in Europe. Nucl. Eng. Des. 2003;226:165–182. doi: 10.1016/j.nucengdes.2003.06.001. DOI
Jóźwiak I.J. An introduction to the studies of reliability of systems using the Weibull proportional hazards model. Microelectron. Reliab. 1997;37:915–918. doi: 10.1016/S0026-2714(96)00285-5. DOI
Kabir S., Papadopoulos Y. Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: a review. Saf. Sci. 2019;115:154–175. doi: 10.1016/j.ssci.2019.02.009. DOI
Kamaruddin S., Ab-Samat H. Opportunistic maintenance (OM) as a new advancement in maintenance approaches: a review. J. Qual. Mainten. Eng. 2014;20:98–121. doi: 10.1108/JQME-04-2013-0018. DOI
Kaplan S., Garrick B.J. On the quantitative definition of risk. Risk Anal. 1981;1:11–27. doi: 10.1111/j.1539-6924.1981.tb01350.x. PubMed DOI
Kareem B., Jewo A.O. Development of a model for failure prediction on critical equipment in the petrochemical industry. Eng. Fail. Anal. 2015;56:338–347. doi: 10.1016/j.engfailanal.2015.01.006. DOI
Keshavarz G., Thodi P., Khan F. Risk-based shutdown management of LNG units. J. Loss Prev. Process Ind. 2012;25:159–165. doi: 10.1016/j.jlp.2011.08.006. DOI
Khakzad N. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliab. Eng. Syst. Saf. 2015;138:263–272. doi: 10.1016/j.ress.2015.02.007. DOI
Khakzad N., Khan F., Amyotte P. Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 2011;96:925–932. doi: 10.1016/j.ress.2011.03.012. DOI
Khan F., Rathnayaka S., Ahmed S. Methods and models in process safety and risk management: past, present and future. Process Saf. Environ. Prot. 2015;98:116–147. doi: 10.1016/j.psep.2015.07.005. DOI
Khan F.I., Haddara M.M. Risk-based maintenance (RBM): a quantitative approach for maintenance/inspection scheduling and planning. J. Loss Prev. Process Ind. 2003;16:561–573. doi: 10.1016/j.jlp.2003.08.011. DOI
Khan Faisal I., Haddara M.R. Risk-based maintenance of ethylene oxide production facilities. J. Hazard. Mater. 2004;108:147–159. doi: 10.1016/j.jhazmat.2004.01.011. PubMed DOI
Khan Faisal I., Haddara M. Risk-based maintenance (RBM): a new approach for process plant inspection and maintenance. Process Saf. Prog. 2004;23:252–265. doi: 10.1002/prs.10010. DOI
Kiureghian A.D., Ditlevsen O. Aleatory or epistemic? Does it matter? Struct. Saf. Risk Accept. Risk Commun. 2009;31:105–112. doi: 10.1016/j.strusafe.2008.06.020. DOI
Klemeš J.J., Fan Y.V., Tan R.R., Jiang P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable Sustainable Energy Rev. 2020;127:109883. PubMed PMC
Klemeš J., Dhole V.R., Raissi K., Perry S.J., Puigjaner L. Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Appl. Therm. Eng. 1997;17:993–1003. doi: 10.1016/S1359-4311(96)00087-7. DOI
Klemeš J.J., Varbanov P.V., Walmsley T.G., Jia X.X. New directions in the implementation of Pinch Methodology (PM) Renewable Sustainable Energy Rev. 2018;98:439–468.
Klemeš J.J., Wang Q.W., Varbanov P.S., Zeng M., Chin H.H., Lal N.S., Li N.Q., Wang B., Wang X.C., Walmsley T.G. Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation. Renewable Sustainable Energy Rev. 2020;120:p.109644.
Kohonen T. 3rd ed., Springer Series in Information Sciences. Springer-Verlag; Berlin, Heidelberg, Germany: 1989. Self-Organization and Associative Memory.
Koochaki J., Bokhorst J.A.C., Wortmann H., Klingenberg W. Condition based maintenance in the context of opportunistic maintenance. Int. J. Prod. Res. 2012;50:6918–6929. doi: 10.1080/00207543.2011.636924. DOI
Kopanos G.M., Xenos D.P., Cicciotti M., Pistikopoulos E.N., Thornhill N.F. Optimization of a network of compressors in parallel: operational and maintenance planning – the air separation plant case. Appl. Energy. 2015;146:453–470. doi: 10.1016/j.apenergy.2015.01.080. DOI
Kothamasu R., Huang S.H. Adaptive Mamdani fuzzy model for condition-based maintenance. Fuzzy Sets Syst. Theme Model. Control. 2007;158:2715–2733. doi: 10.1016/j.fss.2007.07.004. DOI
Kovacs Z., Orosz A., Friedler F. Synthesis algorithms for the reliability analysis of processing systems. Cent. Eur. J. Oper. Res. 2019;27:573–595.
Krishnasamy L., Khan F., Haddara M. Development of a risk-based maintenance (RBM) strategy for a power-generating plant. J. Loss Prev. Process Ind. 2005;18:69–81. doi: 10.1016/j.jlp.2005.01.002. DOI
Kulshrestha D.K. Operational behaviour of a multicomponent system having stand-by redundancy with opportunistic reparis. Unternehmensforschung Oper. Res. 1968;12:159–172. doi: 10.1007/BF01918325. DOI
Kumar G., Maiti J. Modeling risk based maintenance using fuzzy analytic network process. Expert Syst. Appl. 2012;39:9946–9954. doi: 10.1016/j.eswa.2012.01.004. DOI
Kumar U., Galar D. Maintenance in the era of industry 4.0: issues and challenges. In: Kapur P.K., Kumar U., Verma A.K., editors. Quality, IT and Business Operations: Modeling and Optimization, Springer Proceedings in Business and Economics. Springer Singapore; Singapore: 2018. pp. 231–250. DOI
Labib A. Learning (and unlearning) from failures: 30 years on from Bhopal to Fukushima an analysis through reliability engineering techniques. Process Saf. Environ. Prot. 2015;97:80–90. doi: 10.1016/j.psep.2015.03.008. DOI
Laggoune R., Chateauneuf A., Aissani D. Opportunistic policy for optimal preventive maintenance of a multi-component system in continuous operating units. Comput. Chem. Eng. 2009;33:1499–1510. doi: 10.1016/j.compchemeng.2009.03.003. DOI
Laggoune R., Chateauneuf A., Aissani D. Impact of few failure data on the opportunistic replacement policy for multi-component systems. Reliab. Eng. Syst. Saf. 2010;95:108–119. doi: 10.1016/j.ress.2009.08.007. DOI
Lapa C.M.F., Pereira C.M.N.A., de Barros M.P. A model for preventive maintenance planning by genetic algorithms based in cost and reliability. Reliab. Eng. Syst. Saf. 2006;91:233–240. doi: 10.1016/j.ress.2005.01.004. DOI
Leoni L., BahooToroody A., De Carlo F., Paltrinieri N. Developing a risk-based maintenance model for a Natural Gas Regulating and Metering Station using Bayesian Network. J. Loss Prev. Process Ind. 2019;57:17–24. doi: 10.1016/j.jlp.2018.11.003. DOI
Lewis S.A., Edwards T.G. Smart sensors and system health management tools for avionics and mechanical systems. Presented at the 16th DASC. AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future. Proceedings, 8.5–1. 1997 doi: 10.1109/DASC.1997.637283. DOI
Li G., Li Y., Zhang X., Hou C., He J., Xu B., Chen J. Development of a preventive maintenance strategy for an automatic production line based on group maintenance method. Appl. Sci. 2018;8:1781. doi: 10.3390/app8101781. DOI
Li J., Blumenfeld E.D., Huang N., Alden J. Throughput analysis of production systems: recent advances and future topics. Int. J. Prod. Res. 2009;47:3823–3851. doi: 10.1080/00207540701829752. DOI
Lim H.-G., Han S.H. Systematic treatment of circular logics in a fault tree analysis. Nucl. Eng. Des. 2012;245:172–179. doi: 10.1016/j.nucengdes.2011.12.016. DOI
Linnhoff B., Townsend D.W., Boland D., Hewitt G.F., Thomas B.E.A., Guy A.R., Marsland R.H. 2nd ed. IChemE; Rugby, UK: 1982. A user guide on process integration for the efficient use of energy.
Macchi M., Kristjanpoller F., Garetti M., Arata A., Fumagalli L. Introducing buffer inventories in the RBD analysis of process production systems. Reliab. Eng. Syst. Saf. 2012;104:84–95. doi: 10.1016/j.ress.2012.03.015. DOI
Magargle R., Johnson L., Mandloi P., Davoudabadi P., Kesarkar O., Krishnaswamy S., Batteh J., Pitchaikani A. A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system. The 12th International Modelica Conference; Prague, Czech Republic, May; 2017. pp. 35–46. DOI
Marquez A.C., Gupta J.N.D., Heguedas A.S. Maintenance policies for a production system with constrained production rate and buffer capacity. Int. J. Prod. Res. 2003;41:1909–1926. doi: 10.1080/0020754031000123877. DOI
Marseguerra M., Zio E., Podofillini L. Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation. Reliab. Eng. Syst. Saf. 2002;77:151–165. doi: 10.1016/S0951-8320(02)00043-1. DOI
Mat Dan R., Zulkafli N.I. Investigation of maintenance performance for a gasification process unit using Weibull analysis. J. Qual. Mainten. Eng. 2016;22:252–263. doi: 10.1108/JQME-08-2015-0039. DOI
Mauney D.A., Schmidt M.E.G. Fully quantitative predictive maintenance/inspection planning optimization for chemical process plant components. Process Saf. Prog. 1997;16:262–268. doi: 10.1002/prs.680160411. DOI
McCall J.J. Maintenance policies for stochastically failing equipment: a survey. Manage. Sci. 1965;11:493–524.
Megow N., Möhring R.H., Schulz J. Decision support and optimization in shutdown and turnaround scheduling. INFORMS J. Comput. 2010;23:189–204. doi: 10.1287/ijoc.1100.0393. DOI
Melani A.H.A., Murad C.A., Caminada Netto A., de Souza G.F.M., Nabeta S.I. Criticality-based maintenance of a coal-fired power plant. Energy. 2018;147:767–781. doi: 10.1016/j.energy.2018.01.048. DOI
Miyata S., Akashi Y., Lim J., Tanaka K., Tanaka S., Kuwahara Y. Model-based fault detection and diagnosis using convolutional neural networks in heat source system with water thermal storage tanks. IOP Conf. Ser. Earth Environ. Sci. 2019;238:012070. doi: 10.1088/1755-1315/238/1/012070. DOI
Moghaddam K.S. Multi-objective preventive maintenance and replacement scheduling in a manufacturing system using goal programming. Int. J. Prod. Econ. 2013;146:704–716. doi: 10.1016/j.ijpe.2013.08.027. DOI
Mohamed A.M., Saad S.M. Development of risk assessment model for equipment within the petroleum industry. IFAC – Papers OnLine. 2016;49:37–42. doi: 10.1016/j.ifacol.2016.11.007. DOI
Mohamed R.B., Hassan C.R.B.C., Hamid M.D. Developing a risk-based inspection practices maturity model for Malaysian industries. J. Loss Prev. Process Ind. 2018;56:217–230. doi: 10.1016/j.jlp.2018.08.011. DOI
Montgomery R.L., Serratella C. 2002. Risk-Based Maintenance: A New Vision for Asset Integrity Management; pp. 151–165. DOI
Nahas N. Buffer allocation and preventive maintenance optimization in unreliable production lines. J. Intell. Manuf. 2017;28:85–93. doi: 10.1007/s10845-014-0963-y. DOI
Natarajan S., Ghosh K., Srinivasan R. An ontology for distributed process supervision of large-scale chemical plants. Comput. Chem. Eng. 2012;46:124–140. doi: 10.1016/j.compchemeng.2012.06.009. DOI
Newell E.E.G. Oil analysis cost-effective machine condition monitoring technique. Ind. Lubric. Tribol. 1999;51:119–124. doi: 10.1108/00368799910268066. DOI
Nguyen D., Bagajewicz M. Optimization of preventive maintenance scheduling in processing plants. Comput. Aided Chem. Eng. 2008:319–324. doi: 10.1016/S1570-7946(08)80058-2. DOI
Nguyen D., Bagajewicz M. Optimization of preventive maintenance in chemical process plants. Ind. Eng. Chem. Res. 2010;49:4329–4339. doi: 10.1021/ie901433b. DOI
Nikoo M., Zarfam P., Sayahpour H. Determination of compressive strength of concrete using Self Organization Feature Map (SOFM) Eng. Comput. 2013;31 doi: 10.1007/s00366-013-0334-x. DOI
Nilsson J., Wojciechowski A., Stromberg A., Patriksson M., Bertling L. An opportunistic maintenance optimization model for shaft seals in feed-water pump systems in nuclear power plants. Presented at the 2009 IEEE Bucharest PowerTech. 2009:1–8. doi: 10.1109/PTC.2009.5281892. DOI
Niu G., Yang B.-S., Pecht M. Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance. Reliab. Eng. Syst. Saf. 2010;95:786–796. doi: 10.1016/j.ress.2010.02.016. DOI
Okoh C., Roy R., Mehnen J., Redding L. Overview of remaining useful life prediction techniques in through-life engineering services. Proc. CIRP. 2014;16:158–163. doi: 10.1016/j.procir.2014.02.006. DOI
Okoh P., Haugen S. A study of maintenance-related major accident cases in the 21st century. Process Saf. Environ. Prot. Loss Prev. 2013. 2014;92:346–356. doi: 10.1016/j.psep.2014.03.001. DOI
OREDA . 6th ed. DNV; Høvik, Norway: 2015. Offshore Reliability Data Handbook.
Orosz Á., Friedler F. Synthesis technology for failure analysis and corrective actions in process systems engineering. Comput. Aided Chem. Eng. 2019:1405–1410. doi: 10.1016/B978-0-12-818634-3.50235-6. DOI
Orosz A., Friedler F., Varbanov P.S., Klemeš J.J. Systems reliability, footprints Sustainability. Chem. Eng. Trans. 2018;1(63):121–126. doi: 10.3303/CET1863021. DOI
Orosz Á., Kovács Z., Friedler F. Synthesis of heat integrated processing systems taking into account reliability. Energy. 2019;181:214–225. doi: 10.1016/j.energy.2019.05.173. DOI
Pan T.C., Shen J.F., Mao X.M., Qu M. A synthetic assessment model for the condition of major equipment in nuclear power plants. In: He Y., Qing X., editors. Automatic Control, Mechatronics and Industrial Engineering: Proceedings of the International Conference on Automatic Control, Mechatronics and Industrial Engineering (ACMIE 2018), Suzhou, China. CRC Press; London, UK: 2019. pp. 129–139. DOI
Petchrompo S., Parlikad A.K. A review of asset management literature on multi-asset systems. Reliab. Eng. Syst. Saf. 2019;181:181–201. doi: 10.1016/j.ress.2018.09.009. DOI
P-Graph, 2019. <www.p-graph.com/> (accessed 10.04.20).
Piadeh F., Ahmadi M., Behzadian K. Reliability assessment for hybrid systems of advanced treatment units of industrial wastewater reuse using combined event tree and fuzzy fault tree analyses. J. Clean. Prod. 2018;201:958–973. doi: 10.1016/j.jclepro.2018.08.052. DOI
Pistikopoulos E.N., Vassiliadis C.G., Arvela J., Papageorgiou L.G. Interactions of maintenance and production planning for multipurpose process plants: a system effectiveness approach. Ind. Eng. Chem. Res. 2001;40:3195–3207. doi: 10.1021/ie000431q. DOI
Pistikopoulos E.N., Vassiliadis C.G., Papageorgiou L.G. Process design for maintainability: an optimization approach. Comput. Chem. Eng. 2000;24:203–208. doi: 10.1016/S0098-1354(00)00514-7. DOI
Postnikov I., Stennikov V., Mednikova E., Penkovskii A. Methodology for optimization of component reliability of heat supply systems, transformative innovations for a sustainable future – Part III. Appl. Energy. 2018;227:365–374. doi: 10.1016/j.apenergy.2017.11.073. DOI
Qinqin C., Jia Q., Yuan Z., Huang L. Environmental risk source management system for the petrochemical industry. Process Saf. Environ. Prot. 2014;92:251–260. doi: 10.1016/j.psep.2013.01.004. DOI
Radner R., Jorgenson D.W. opportunistic replacement of a single part in the presence of several monitored parts. Manage. Sci. 1963;10:70–84. doi: 10.1287/mnsc.10.1.70. DOI
Rajagopalan S., Sahinidis N., Amaran S., Agarwal A., Bury S., Sharda B., Wassick J. Risk analysis of turnaround reschedule planning in integrated chemical sites. Comput. Chem. Eng. 2017;107 doi: 10.1016/j.compchemeng.2017.04.017. DOI
Ramesh P.G., Dutta S.J., Neog S.S., Baishya P., Bezbaruah I. Implementation of predictive maintenance systems in remotely located process plants under industry 4.0 scenario. In: Karanki D.R., Vinod G., Ajit S., editors. Advances in RAMS Engineering: In Honor of Professor Ajit Kumar Verma on his 60th Birthday. Springer Series in Reliability Engineering. Springer International Publishing; Cham: 2020. pp. 293–326. DOI
Rathnayaka S., Khan F., Amyotte P. SHIPP methodology: predictive accident modeling approach. Part I: Methodology and model description. Process Saf. Environ. Prot. 2011;89:151–164. doi: 10.1016/j.psep.2011.01.002. DOI
Reis M.S., Braatz R.D., Chiang L.H. 2016. Big Data: Challenges and Future Research Directions. < https://www.aiche.org/resources/publications/cep/2016/march/big-data-success-stories-process-industries> (accessed 20.04.20)
Ricker N.L., Lee J.H. Nonlinear modeling and state estimation for the Tennessee Eastman challenge process. Comput. Chem. Eng. 1995;19:983–1005. doi: 10.1016/0098-1354(94)00113-3. DOI
Rustogi K., Strusevich V.A. Single machine scheduling with general positional deterioration and rate-modifying maintenance. Omega Special Issue Forecast. Manage. Sci. 2012;40:791–804. doi: 10.1016/j.omega.2011.12.007. DOI
Sahoo T., Sarkar P.K., Sarkar A.K., Iocl C.M. Maintenance optimization for critical equipments in process industries based on FMECA method. Int. J. Eng. Innov. Technol. 2014;3(10) April 2014.
Saidur R., Rahim N.A., Hasanuzzaman M. A review on compressed-air energy use and energy savings. Renewable Sustainable Energy Rev. 2010;14:1135–1153. doi: 10.1016/j.rser.2009.11.013. DOI
Sen D., Fashokun A., Angelotti R., Brooks M., Bhaumik H., Card C., Lodhi A., Godrej A., Chung C. An artificial intelligence platform for asset management contributes to better decision-making tools for operations, maintenance, and utility management. Water Environ. Res. 2018;90:355–375. doi: 10.2175/106143017X15131012152762. PubMed DOI
Shafiee M. Maintenance strategy selection problem: an MCDM overview. J. Qual. Mainten. Eng. 2015;21:378–402. doi: 10.1108/JQME-09-2013-0063. DOI
Sharma A., Yadava G.S., Deshmukh S.G. A literature review and future perspectives on maintenance optimization. J. Qual. Mainten. Eng. 2011;17:5–25. doi: 10.1108/13552511111116222. DOI
Sheikhalishahi M., Azadeh A., Pintelon L. Dynamic maintenance planning approach by considering grouping strategy and human factors. Process Saf. Environ. Prot. 2017;107:289–298. doi: 10.1016/j.psep.2017.02.015. DOI
Sheikhalishahi M., Pintelon L., Azadeh A. An integrated approach for maintenance planning by considering human factors: application to a petrochemical plant. Process Saf. Environ. Prot. 2017;109:400–409. doi: 10.1016/j.psep.2017.04.016. DOI
Shey-Huei Sheu, Griffith W.S., Toshio Nakagawa T. Extended optimal replacement model with random minimal repair costs. Eur. J. Oper. Res. 1995;85:636–649. doi: 10.1016/0377-2217(93)E0364-4. DOI
Shi H., Zeng J. Real-time prediction of remaining useful life and preventive opportunistic maintenance strategy for multi-component systems considering stochastic dependence. Comput. Ind. Eng. 2016;93:192–204. doi: 10.1016/j.cie.2015.12.016. DOI
Shin J.-H., Jun H.-B. On condition based maintenance policy. J. Comput. Des. Eng. 2015;2:119–127. doi: 10.1016/j.jcde.2014.12.006. DOI
Sikos L., Klemeš J. Reliability, availability and maintenance optimisation of heat exchanger networks. Appl. Therm. Eng. 2010;30:63–69. doi: 10.1016/j.applthermaleng.2009.02.013. 2010. DOI
Silva E.C. Why are major accidents still occurring? Process Saf. Prog. 2016;35:253–257. doi: 10.1002/prs.11795. DOI
Silva M., Recalde L. On fluidification of Petri Nets: from discrete to hybrid and continuous models. Annu. Rev. Control. 2004;28:253–266. doi: 10.1016/j.arcontrol.2004.05.002. DOI
Sperotto A., Molina J.-L., Torresan S., Critto A., Marcomini A. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: a multi-risk perspective. J. Environ. Manage. 2017;202:320–331. doi: 10.1016/j.jenvman.2017.07.044. PubMed DOI
Srivastava P., Khanduja D., Agrawal V.P. Integrating agile thinking into maintenance strategy performance analysis. IJPMB. 2018;8:228. doi: 10.1504/IJPMB.2018.090785. DOI
Susto G.A., Schirru A., Pampuri S., McLoone S., Beghi A. Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform. 2015;11:812–820. doi: 10.1109/TII.2014.2349359. DOI
Tan J.S., Kramer M.A. A general framework for preventive maintenance optimization in chemical process operations. Comput. Chem. Eng. 1997;21:1451–1469. doi: 10.1016/S0098-1354(97)88493-1. DOI
Tan R.R., Aziz M.K.A., Ng D.K.S., Foo D.C.Y., Lam H.L. Pinch analysis-based approach to industrial safety risk and environmental management. Clean Technol. Environ. Policy. 2016;18:2107–2117. doi: 10.1007/s10098-016-1101-7. DOI
Terrazas-Moreno S., Grossmann I., Wassick J., Bury S., Akiya N. An efficient method for optimal design of large-scale integrated chemical production sites with endogenous uncertainty. Comput. Chem. Eng. 2011;37 doi: 10.1016/j.compchemeng.2011.10.005. DOI
Terrazas-Moreno S., Grossmann I.E., Wassick J.M., Bury S.J. Optimal design of reliable integrated chemical production sites. Comput. Chem. Eng. 2010;34:1919–1936. doi: 10.1016/j.compchemeng.2010.07.027. DOI
Thodi P., Khan F., Hassan J. Availability analysis of a LNG processing plant using the Markov process. J. Qual. Mainten. Eng. 2016;22:302–320. doi: 10.1108/JQME-05-2012-0018. DOI
Trzcinski P., Markowski M. Diagnosis of the fouling effects in a shell and tube heat exchanger using artificial neural network. Chem. Eng. Trans. 2018;70:355–360. doi: 10.3303/CET1870060. DOI
Tseng T.-L.(Bill), Hvolby H.-H., Fraser K. Maintenance management models: a study of the published literature to identify empirical evidence: a greater practical focus is needed. Int. J. Qual. Reliab. Manange. 2015;32:635–664. doi: 10.1108/IJQRM-11-2013-0185. DOI
Vassiliadis C.G., Pistikopoulos E.N. Maintenance-based strategies for environmental risk minimization in the process industries. J. Hazard. Mater. 2000;71:481–501. PubMed
Vianello C., Milazzo M.F., Guerrini L., Mura A., Maschio G. A risk-based tool to support the inspection management in chemical plants. J. Loss Prev. Process Ind. 2016;41:154–168. doi: 10.1016/j.jlp.2016.03.005. DOI
Vilarinho S., Lopes I., Oliveira J.A. Preventive maintenance decisions through maintenance optimization, Modena, Italy. Proc. Manuf. 2017;11:1170–1177. doi: 10.1016/j.promfg.2017.07.241. DOI
Villa V., Paltrinieri N., Khan F., Cozzani V. Towards dynamic risk analysis: a review of the risk assessment approach and its limitations in the chemical process industry. Saf. Sci. 2016;89:77–93. doi: 10.1016/j.ssci.2016.06.002. DOI
Vinod G., Sharma P.K., Santosh T.V., Hari Prasad M., Vaze K.K. New approach for risk based inspection of H2S based process plants. Ann. Nucl. Energy. 2014;66:13–19. doi: 10.1016/j.anucene.2013.08.042. DOI
Wang K., Djurdjanovic D. Joint optimization of preventive maintenance, spare parts inventory and transportation options for systems of geographically distributed assets. Machines. 2018;6:55. doi: 10.3390/machines6040055. DOI
Wang W. An overview of the recent advances in delay-time-based maintenance modelling. Reliab. Eng. Syst. Saf. 2012;106:165–178. doi: 10.1016/j.ress.2012.04.004. DOI
Wang Y., Deng C., Wu J., Wang Y., Xiong Y. A corrective maintenance scheme for engineering equipment. Eng. Fail. Anal. 2014;36:269–283. doi: 10.1016/j.engfailanal.2013.10.006. DOI
Wang Z., Wang W., Hu C., Liu X. An integrated decision model for critical component spare parts ordering and condition based replacement with prognostic information. Chem. Eng. Trans. 2013;33:1063–1068. doi: 10.3303/CET1333178. DOI
Weber P., Medina-Oliva G., Simon C., Iung B. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Eng. Appl. Artif. Intell. 2012;25:671–682. doi: 10.1016/j.engappai.2010.06.002. DOI
Xiang Y., Cassady C.R., Pohl E.A. Optimal maintenance policies for systems subject to a Markovian operating environment. Comput. Ind. Eng. 2012;62:190–197. doi: 10.1016/j.cie.2011.09.006. DOI
Yang L., Zhao Y., Peng R., Ma X. Opportunistic maintenance of production systems subject to random wait time and multiple control limits. J. Manuf. Syst. 2018;47:12–34. doi: 10.1016/j.jmsy.2018.02.003. DOI
Yadava G.s., Deshmukh S.g., Sharma A. A literature review and future perspectives on maintenance optimization. J. Qual. Maintenance Eng. 2011;17:5–25. doi: 10.1108/13552511111116222. DOI
Yazdi M., Nedjati A., Abbassi R. Fuzzy dynamic risk-based maintenance investment optimization for offshore process facilities. J. Loss Prev. Process Ind. 2019;57:194–207. doi: 10.1016/j.jlp.2018.11.014. DOI
Zhang L., Hu J. Safety prognostic technology in complex petroleum engineering systems: progress, challenges and emerging trends. Pet. Sci. 2013;10:486–493. doi: 10.1007/s12182-013-0299-9. DOI
Zhang Z., Wu S., Li B., Lee S. Optimal maintenance policy for multi-component systems under Markovian environment changes. Expert Syst. Appl. 2013;40:7391–7399. doi: 10.1016/j.eswa.2013.07.003. DOI
Zhao F., Wang W., Peng R. Delay-time-based preventive maintenance modelling for a production plant: a case study in a steel mill. J. Oper. Res. Soc. 2015;66:2015–2024. doi: 10.1057/jors.2015.20. DOI
Zhao Z., Wang F., Jia M., Wang S. Predictive maintenance policy based on process data. Chemometr. Intell. Lab. Syst. 2010;103:137–143. doi: 10.1016/j.chemolab.2010.06.009. DOI
Zhen X., Vinnem J.E., Peng C., Huang Y. Quantitative risk modelling of maintenance work on major offshore process equipment. J. Loss Prev. Process Ind. 2018;56:430–443. doi: 10.1016/j.jlp.2018.10.004. DOI
Zheng X. All opportunity-triggered replacement policy for multiple-unit systems. IEEE Trans. Reliab. 1995;44:648–652. doi: 10.1109/24.475996. DOI