Asset maintenance optimisation approaches in the chemical and process industries - A review

. 2020 Dec ; 164 () : 162-194. [epub] 20201008

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33052158
Odkazy

PubMed 33052158
PubMed Central PMC7543700
DOI 10.1016/j.cherd.2020.09.034
PII: S0263-8762(20)30498-6
Knihovny.cz E-zdroje

The operational performance of a chemical process plant highly depends on the assets' condition and maintenance practices. As chemical processes are highly complex systems, increasing the risk frequencies and their interactions, the maintenance planning becomes crucial for stable operation. This paper provides a critical analysis of the recently developed approaches for asset maintenance approaches in the chemical industry. The strategies include corrective maintenance, time-based, risk-based, condition-based and opportunistic maintenance. Various methods on selecting the optimal maintenance strategy are discussed as well. This paper also evaluates reliability issues in chemical plants and integrated sites encompassing the maintenance optimisation. Several directions for potential future improvements are proposed based on this analysis, as follows: (i) potential study of exploiting production or other opportunities to postpone or conduct earlier maintenance; (ii) joint optimisation of spare part ordering strategy and data-driven maintenance planning study is needed; (iii) fault propagation modelling of structural dependent units to facilitate proper maintenance planning; (iv) a framework or tool that consider quantitative and qualitative time-variant data inputs is lacking for business-informed asset maintenance.

Zobrazit více v PubMed

Aguirre A.M., Papageorgiou L.G. Resource-constrained formulation for production scheduling and maintenance. In: Espuña A., Graells M., Puigjaner L., editors. Computer Aided Chemical Engineering, 27 European Symposium on Computer Aided Process Engineering. Elsevier; 2017. pp. 1375–1380. DOI

Ahmad R., Kamaruddin S. An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 2012;63:135–149. doi: 10.1016/j.cie.2012.02.002. DOI

Ahmed Q., Moghaddam K.S., Raza S.A., Khan F.I. A multi-constrained maintenance scheduling optimization model for a hydrocarbon processing facility. Proc. IMechE. 2015;229:151–168. doi: 10.1177/1748006X15573166. DOI

Ahuja I., Khamba J. Total productive maintenance implementation in a manufacturing organisation. Int. J. Prod. Qual. Manage. 2008;3 doi: 10.1504/IJPQM.2008.017504. DOI

Ajukumar V.N., Gandhi O.P. Evaluation of green maintenance initiatives in design and development of mechanical systems using an integrated approach. J. Clean. Prod. 2013;51:34–46. doi: 10.1016/j.jclepro.2013.01.010. DOI

Alebrant Mendes A., Weber Lorenzoni M. Analysis and optimization of periodic inspection intervals in cold standby systems using Monte Carlo simulation. J. Manuf. Syst. 2018;49:121–130. doi: 10.1016/j.jmsy.2018.09.006. DOI

Al-Najjar B. Total quality maintenance: an approach for continuous reduction in costs of quality products. J. Qual. Mainten. Eng. 1996;2:4–20. doi: 10.1108/13552519610130413. DOI

Al-Najjar B. 1997. Condition-Based Maintenance: Selection and Improvement of a Cost-Effective Vibration-Based Maintenance Policy for Rolling element Bearings, Condition-Based Maintenance.

Al-Najjar B., Alsyouf I. Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making. Int. J. Prod. Econ. 2003;84:85–100. doi: 10.1016/S0925-5273(02)00380-8. DOI

Alrabghi A., Tiwari A. State of the art in simulation-based optimisation for maintenance systems. Comput. Ind. Eng. 2015;82:167–182. doi: 10.1016/j.cie.2014.12.022. DOI

Alrabghi A., Tiwari A., Savill M. Simulation-based optimisation of maintenance systems: industrial case studies. J. Manuf. Syst. 2017;44:191–206. doi: 10.1016/j.jmsy.2017.05.008. DOI

Amaran S., Sahinidis N., Sharda B., Morrison M., Bury S., Miller S., Wassick J. Long-term turnaround planning for integrated chemical sites. Comput. Chem. Eng. 2015;72 doi: 10.1016/j.compchemeng.2014.08.003. DOI

Amaran S., Zhang T., Sahinidis N.V., Sharda B., Bury S.J. Medium-term maintenance turnaround planning under uncertainty for integrated chemical sites. Comput. Chem. Eng. 2016;84:422–433. doi: 10.1016/j.compchemeng.2015.09.007. DOI

Aoki T., Kodama N., Takase K., Miya K. Study of the optimization of maintenance plan for nuclear power plants. EJAM. 2014;6:1–13.

Apeland S., Aven T. Risk based maintenance optimization: foundational issues. Reliab. Eng. Syst. Saf. 2000;67:285–292. doi: 10.1016/S0951-8320(99)00068-X. DOI

Aqlan F., Mustafa Ali E. Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. J. Loss Prev. Process Ind. 2014;29:39–48. doi: 10.1016/j.jlp.2014.01.006. DOI

Armitage C. 2015. Develop a Maintenance and Reliability Plan. < https://www.aiche.org/sites/default/files/cep/20150638.pdf> (accessed 10.04.20)

Arunraj N.S., Maiti J. Risk-based maintenance policy selection using AHP and goal programming. Saf. Sci. 2010;48:238–247. doi: 10.1016/j.ssci.2009.09.005. DOI

Arunraj N.S., Mandal S., Maiti J. Modeling uncertainty in risk assessment: an integrated approach with fuzzy set theory and Monte Carlo simulation. Accid. Anal. Prev. 2013;55:242–255. doi: 10.1016/j.aap.2013.03.007. PubMed DOI

Aviso K., Cayamanda C., Mayol A.P., Danielle S., Yu K. Optimizing human resource allocation in organizations during crisis conditions: a P-graph approach. Process Integr. Optim. Sustainab. 2017 doi: 10.1007/s41660-017-0004-3. DOI

Aviso K.B., Demeterio F.P.A., Lucas R.I.G., Tan R.R. P-graph approach to planning human resource expansion for universities in transition. Chem. Eng. Trans. 2018;1(70):277–282. doi: 10.3303/CET1870047. DOI

Ayo-Imoru R.M., Cilliers A.C. A survey of the state of condition-based maintenance (CBM) in the nuclear power industry. Ann. Nucl. Energy. 2018;112:177–188. doi: 10.1016/j.anucene.2017.10.010. DOI

Azadeh A., Abdolhossein Zadeh S. An integrated fuzzy analytic hierarchy process and fuzzy multiple-criteria decision-making simulation approach for maintenance policy selection. Simulation. 2016;92:3–18. doi: 10.1177/0037549715616686. DOI

BahooToroody A., Abaei M.M., Arzaghi E., BahooToroody F., De Carlo F., Abbassi R. Multi-level optimization of maintenance plan for natural gas system exposed to deterioration process. J. Hazard. Mater. 2019;362:412–423. doi: 10.1016/j.jhazmat.2018.09.044. PubMed DOI

Barbera F. LSU Historical Dissertations and Theses; 1994. Optimal Preventive Maintenance Strategies for a Production System Subject to Random Shocks.

Barua S., Gao X., Pasman H., Mannan M.S. Bayesian network based dynamic operational risk assessment. J. Loss Prev. Process Ind. 2016;41:399–410. doi: 10.1016/j.jlp.2015.11.024. DOI

Basri E.I., Abdul Razak I.H., Ab-Samat H., Kamaruddin S. Preventive maintenance (PM) planning: a review. J. Qual. Mainten. Eng. 2017;23:114–143. doi: 10.1108/JQME-04-2016-0014. DOI

Bayoumi A., McCaslin R. Internet of things – a predictive maintenance tool for general machinery, petrochemicals and water treatment. In: Bahei-El-Din Y., Hassan M., editors. Advanced Technologies for Sustainable Systems. Springer International Publishing; Cham: 2017. pp. 137–146. DOI

Ben Ali J., Fnaiech N., Saidi L., Chebel-Morello B., Fnaiech F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 2015;89:16–27. doi: 10.1016/j.apacoust.2014.08.016. DOI

Benjamin M.F.D. Multi-disruption criticality analysis in bioenergy-based eco-industrial parks via the P-graph approach. J. Clean. Prod. 2018;186:325–334. doi: 10.1016/j.jclepro.2018.03.130. DOI

Benjamin M.F.D., Cayamanda C.D., Tan R.R., Razon L.F. P-graph approach to criticality analysis in integrated bioenergy systems. Clean Technol. Environ. Policy. 2017;19:1841–1854. doi: 10.1007/s10098-017-1368-3. DOI

Benjamin M.F.D., Tan R.R., Razon L.F. A methodology for criticality analysis in integrated energy systems. Clean Technol. Environ. Policy. 2015;17:935–946. doi: 10.1007/s10098-014-0846-0. DOI

Benkedjouh T., Medjaher K., Zerhouni N., Rechak S. Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Eng. Appl. Artif. Intell. 2013;26:1751–1760. doi: 10.1016/j.engappai.2013.02.006. DOI

Bergman B. Optimal replacement under a general failure model. Adv. Appl. Probab. 1978;10:431–451. doi: 10.2307/1426944. DOI

Berrade M.D., Scarf P.A., Cavalcante C.A.V. A study of postponed replacement in a delay time model. Reliab. Eng. Syst. Saf. Mainten. Model. 2017;168:70–79. doi: 10.1016/j.ress.2017.04.006. DOI

Bertolini M., Bevilacqua M., Ciarapica F.E., Giacchetta G. Development of risk-based inspection and maintenance procedures for an oil refinery. J. Loss Prev. Process Ind. 2009;22:244–253. doi: 10.1016/j.jlp.2009.01.003. DOI

Besnard F., Patrikssont M., Strombergt A., Wojciechowskit A., Bertling L. An optimization framework for opportunistic maintenance of offshore wind power system. Presented at the 2009 IEEE Bucharest PowerTech. 2009 doi: 10.1109/PTC.2009.5281868. DOI

Bhandari J., Arzaghi E., Abbassi R., Garaniya V., Khan F. Dynamic risk-based maintenance for offshore processing facility. Process Saf. Prog. 2016;35:399–406. doi: 10.1002/prs.11829. DOI

Bjerga T., Aven T. Adaptive risk management using new risk perspectives – an example from the oil and gas industry. Reliab. Eng. Syst. Saf. 2015;134:75–82. doi: 10.1016/j.ress.2014.10.013. DOI

Bokinsky H., McKenzie A., Bayoumi A., McCaslin R.B., Patterson A., Matthews M., Schmidley J., Eisner M.L. 2013. Application of Natural Language Processing Techniques to Marine V-22 Maintenance Data for Populating a CBM-Oriented Database.

BS-EN-13306 Maintenance – maintenance terminology. Tech Rep. European Committee for Standardization; Brussels, Belgium; 2017.

Carlo F.D., Arleo M.A. Imperfect maintenance models, from theory to practice. Syst. Reliab. 2017 doi: 10.5772/intechopen.69286. DOI

Castro P.M., Grossmann I.E., Veldhuizen P., Esplin D. Optimal maintenance scheduling of a gas engine power plant using generalized disjunctive programming. AIChE J. 2014;60:2083–2097. doi: 10.1002/aic.14412. DOI

Cavalcante C.A.V., Lopes R.S. Multi-criteria model to support the definition of opportunistic maintenance policy: a study in a cogeneration system. Energy. 2015;80:32–40. doi: 10.1016/j.energy.2014.11.039. DOI

Charles A.-S., Floru I.-R., Azzaro-Pantel C., Pibouleau L., Domenech S. Optimization of preventive maintenance strategies in a multipurpose batch plant: application to semiconductor manufacturing. Comput. Chem. Eng. 2003;27:449–467. doi: 10.1016/S0098-1354(02)00216-8. DOI

Cheung K.-Y., Hui C.-W. Total-site maintenance scheduling. PRES 2001, 4th Conference on Process Integration, Modelling, and Optimisation for Energy Saving and Pollution Reduction; Florence, Italy; 2001. pp. 355–363.

Cheung K.-Y., Hui C.-W., Sakamoto H., Hirata K., O’Young L. Short-term site-wide maintenance scheduling. Comput. Chem. Eng. Escape. 2004;12(28):91–102. doi: 10.1016/S0098-1354(03)00177-7. DOI

Chin H.H., Varbanov P.S., Klemeš J.J. Short term maintenance tasks scheduling with pinch methodology. Chem. Eng. Trans. 2020;78:499–5041. doi: 10.3303/CET2078084. 78, 499-504. DOI

Chin H.H., Varbanov P.S., Klemeš J.J., Lam H.L. Application of Pinch Analysis to opportunistic maintenance management. Chem. Eng. Trans. 2019;76:535–540. doi: 10.3303/CET1976090. DOI

Cho S., Shin J.-H., Jun H.-B., Hwang H.-J., Ha C., Hwang J. A study on estimating the next failure time of compressor equipment in an offshore plant. Math. Probl. Eng. 2016;2016:1–14. doi: 10.1155/2016/8705796. DOI

Chouhan T.R. The unfolding of Bhopal disaster. J. Loss Prev. Process Ind. 2005;18:205–208. doi: 10.1016/j.jlp.2005.07.025. DOI

Christer A.H., Waller W.M. Reducing production downtime using delay-time analysis. J. Oper. Res. Soc. 1984;35:499–512. doi: 10.2307/2581797. DOI

Coats D., Cho K., Shin Y., Goodman N., Blechertas V., Bayoumi A.E. Advanced time–frequency mutual information measures for condition-based maintenance of helicopter drivetrains. IEEE Trans. Instrum. Meas. 2011;60:2984–2994. doi: 10.1109/TIM.2011.2122370. DOI

Cox D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B: Methodol. 1972;34:187–220.

Daher A., Hoblos G., Khalil M., Chetouani Y. New prognosis approach for preventive and predictive maintenance – application to a distillation column. Chem. Eng. Res. Des. 2020;153:162–174. doi: 10.1016/j.cherd.2019.10.029. DOI

Das A.N., Sarmah S.P. Preventive replacement models: an overview and their application in process industries. EJIE. 2010;4:280. doi: 10.1504/EJIE.2010.033332. DOI

de Jonge B., Scarf P.A. A review on maintenance optimization. Eur. J. Oper. Res. 2019 doi: 10.1016/j.ejor.2019.09.047. DOI

Dedopoulos I.T., Shah N. Preventive maintenance policy optimization for multipurpose plant equipment. Comput. Chem. Eng. 1995;19:693–698. doi: 10.1016/0098-1354(95)87116-0. DOI

Dekker R. Applications of maintenance optimization models: a review and analysis. Reliab. Eng. Syst. Saf. Mainten. Reliab. 1996;51:229–240. doi: 10.1016/0951-8320(95)00076-3. DOI

Demir L., Tunali S., Eliiyi D.T. The state of the art on buffer allocation problem: a comprehensive survey. J. Intell. Manuf. 2014;25:371–392. doi: 10.1007/s10845-012-0687-9. DOI

Dey P.k. A risk-based model for inspection and maintenance of cross-country petroleum pipeline. J. Qual. Mainten. Eng. 2001;7:25–43. doi: 10.1108/13552510110386874. DOI

Diaz-Bejarano E., Behranvand E., Coletti F., Mozdianfard M.R., Macchietto S. Organic and inorganic fouling in heat exchangers: industrial case study analysis of fouling rate. Ind. Eng. Chem. Res. 2019;58:228–246. doi: 10.1021/acs.iecr.8b04343. DOI

Diaz-Bejarano E., Coletti F., Macchietto S. Modeling and prediction of shell-side fouling in shell-and-tube heat exchangers. Heat Transf. Eng. 2018;0:1–17. doi: 10.1080/01457632.2018.1446814. DOI

Dow . 2019. Growth in Texas|Our History|Dow Corporate. < https://corporate.dow.com/en-us/about/history/freeport-texas-facility> (accessed 05.04.19)

Du M.Y. Application of virtual instrument technology in condition-based maintenance of chemical equipment. Chem. Eng. Trans. 2018;71:1291–1296. doi: 10.3303/CET1871216. DOI

Elhdad R., Chilamkurti N., Torabi T. An ontology-based framework for process monitoring and maintenance in petroleum plant. J. Loss Prev. Process Ind. 2013;26:104–116. doi: 10.1016/j.jlp.2012.10.001. DOI

Faccio M., Persona A., Sgarbossa F., Zanin G. Industrial maintenance policy development: a quantitative framework. Int. J. Prod. Econ. 2014;147:85–93. doi: 10.1016/j.ijpe.2012.08.018. DOI

Feili H.R., Akar N., Lotfizadeh H., Bairampour M., Nasiri S. Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique. Energy Convers. Manage. 2013;72:69–76. doi: 10.1016/j.enconman.2012.10.027. DOI

Feord D., Jakeman C., Shah N. Modelling multi-site production to optimise customer orders. Comput. Aided Chem. Eng. 2002:661–666. doi: 10.1016/S1570-7946(02)80138-9. DOI

García-Muñoz S., Macgregor J.F. 2016. Big Data: Success Stories in the Process Industries. < https://www.aiche.org/resources/publications/cep/2016/march/big-data-success-stories-process-industries> (accessed 20.04.20)

Ge Y., Xiao M., Yang Z., Zhang L., Hu Z., Feng D. An integrated logarithmic fuzzy preference programming based methodology for optimum maintenance strategies selection. Appl. Soft Comput. 2017;60:591–601. doi: 10.1016/j.asoc.2017.07.021. DOI

Gnoni M.G., Saleh J.H. Near-miss management systems and observability-in-depth: handling safety incidents and accident precursors in light of safety principles. Saf. Sci. 2017;91:154–167. doi: 10.1016/j.ssci.2016.08.012. DOI

Goel H.D., Grievink J., Weijnen M.P.C. Integrated optimal reliable design, production, and maintenance planning for multipurpose process plants. Comput. Chem. Eng. 2003;27:1543–1555. doi: 10.1016/S0098-1354(03)00090-5. DOI

Halimi D., Hafaifa A., Bouali E. Maintenance actions planning in industrial centrifugal compressor based on failure analysis. Eksploatacja i Niezawodnosc. 2014;16:17–21.

Hamedi M., Sharafi S., Delshad M.T. Optimization of preventive maintenance scheduling based on Monte Carlo simulation in processing plants. 15th Iran International Industrial Engineering Conference (IIIEC) 2019:293–296. doi: 10.1109/IIIEC.2019.8720622. DOI

Hameed A., Khan F. A framework to estimate the risk-based shutdown interval for a processing plant. J. Loss Prev. Process Ind. 2014;32:18–29. doi: 10.1016/j.jlp.2014.07.009. DOI

Hameed A., Khan F., Ahmed S. A risk-based shutdown inspection and maintenance interval estimation considering human error. Process Saf. Environ. Prot. 2016;100:9–21. doi: 10.1016/j.psep.2015.11.011. DOI

Hannu J., Backlund F. Can we make maintenance decisions on risk analysis results? J. Qual. Mainten. Eng. 2002;8:77–91. doi: 10.1108/13552510210420603. DOI

Harnly J.A. Risk based prioritization of maintenance repair work. Process Saf. Prog. 1998;17:32–38. doi: 10.1002/prs.680170108. DOI

Hezoucky F., Agence internationale de l’énergie atomique . International Atomic Energy Agency; Vienna, Austria: 2008. Application of Reliability Centred Maintenance to Optimize Operation and Maintenance in Nuclear Power Plants.

Hu H., Cheng G., Li Y., Tang Y. Risk-based maintenance strategy and its applications in a petrochemical reforming reaction system. J. Loss Prev. Process Ind. 2009;22:392–397. doi: 10.1016/j.jlp.2009.02.001. DOI

Huang R.-H., Yang C.-L., Kao C.-S. Assessment model for equipment risk management: petrochemical industry cases. Saf. Sci. 2012;50:1056–1066. doi: 10.1016/j.ssci.2010.02.024. DOI

Huynh K.T., Barros A., Bérenguer C. 2013. A Reliability-based Opportunistic Predictive Maintenance Model for k-out-of-n Deteriorating Systems. DOI

Idris M.M.M. King Fahd University of Petroleum and Minerals; Dhahran, Saudi Arabia: 2016. Turnaround Maintenance Planning for a Network of Plants Using Mathematical Programming Model (masters)

Iqbal H., Tesfamariam S., Haider H., Sadiq R. Inspection and maintenance of oil & gas pipelines: a review of policies. Struct. Infrastruct. Eng. 2017;13:794–815. doi: 10.1080/15732479.2016.1187632. DOI

Ishizaka A., Labib A. A hybrid and integrated approach to evaluate and prevent disasters. J. Oper. Res. Soc. 2014;65:1475–1489. doi: 10.1057/jors.2013.59. DOI

Jaderi F., Ibrahim Z.Z., Nikoo Mehdi, Nikoo Mohammad. Utilizing self-organization systems for modeling and managing risk based on maintenance and repair in petrochemical industries. Soft Comput. 2019;23:6379–6390. doi: 10.1007/s00500-018-3291-x. DOI

Jaderi F., Ibrahim Z.Z., Zahiri M.R. Criticality analysis of petrochemical assets using risk based maintenance and the fuzzy inference system. Process Saf. Environ. Prot. 2019;121:312–325. doi: 10.1016/j.psep.2018.11.005. DOI

Jain P., Pistikopoulos E.N., Mannan M.S. Process resilience analysis based data-driven maintenance optimization: application to cooling tower operations. Comput. Chem. Eng. 2019;121:27–45. doi: 10.1016/j.compchemeng.2018.10.019. DOI

Jeong I.-J., Leon V.J., Villalobos J.R. Integrated decision-support system for diagnosis, maintenance planning, and scheduling of manufacturing systems. Int. J. Prod. Res. 2007;45:267–285. doi: 10.1080/00207540600678896. DOI

Jiang R., Ji P. Age replacement policy: a multi-attribute value model. Reliab. Eng. Syst. Saf. 2002;76:311–318. doi: 10.1016/S0951-8320(02)00021-2. DOI

Jovanovic A. Risk-based inspection and maintenance in power and process plants in Europe. Nucl. Eng. Des. 2003;226:165–182. doi: 10.1016/j.nucengdes.2003.06.001. DOI

Jóźwiak I.J. An introduction to the studies of reliability of systems using the Weibull proportional hazards model. Microelectron. Reliab. 1997;37:915–918. doi: 10.1016/S0026-2714(96)00285-5. DOI

Kabir S., Papadopoulos Y. Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: a review. Saf. Sci. 2019;115:154–175. doi: 10.1016/j.ssci.2019.02.009. DOI

Kamaruddin S., Ab-Samat H. Opportunistic maintenance (OM) as a new advancement in maintenance approaches: a review. J. Qual. Mainten. Eng. 2014;20:98–121. doi: 10.1108/JQME-04-2013-0018. DOI

Kaplan S., Garrick B.J. On the quantitative definition of risk. Risk Anal. 1981;1:11–27. doi: 10.1111/j.1539-6924.1981.tb01350.x. PubMed DOI

Kareem B., Jewo A.O. Development of a model for failure prediction on critical equipment in the petrochemical industry. Eng. Fail. Anal. 2015;56:338–347. doi: 10.1016/j.engfailanal.2015.01.006. DOI

Keshavarz G., Thodi P., Khan F. Risk-based shutdown management of LNG units. J. Loss Prev. Process Ind. 2012;25:159–165. doi: 10.1016/j.jlp.2011.08.006. DOI

Khakzad N. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliab. Eng. Syst. Saf. 2015;138:263–272. doi: 10.1016/j.ress.2015.02.007. DOI

Khakzad N., Khan F., Amyotte P. Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 2011;96:925–932. doi: 10.1016/j.ress.2011.03.012. DOI

Khan F., Rathnayaka S., Ahmed S. Methods and models in process safety and risk management: past, present and future. Process Saf. Environ. Prot. 2015;98:116–147. doi: 10.1016/j.psep.2015.07.005. DOI

Khan F.I., Haddara M.M. Risk-based maintenance (RBM): a quantitative approach for maintenance/inspection scheduling and planning. J. Loss Prev. Process Ind. 2003;16:561–573. doi: 10.1016/j.jlp.2003.08.011. DOI

Khan Faisal I., Haddara M.R. Risk-based maintenance of ethylene oxide production facilities. J. Hazard. Mater. 2004;108:147–159. doi: 10.1016/j.jhazmat.2004.01.011. PubMed DOI

Khan Faisal I., Haddara M. Risk-based maintenance (RBM): a new approach for process plant inspection and maintenance. Process Saf. Prog. 2004;23:252–265. doi: 10.1002/prs.10010. DOI

Kiureghian A.D., Ditlevsen O. Aleatory or epistemic? Does it matter? Struct. Saf. Risk Accept. Risk Commun. 2009;31:105–112. doi: 10.1016/j.strusafe.2008.06.020. DOI

Klemeš J.J., Fan Y.V., Tan R.R., Jiang P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable Sustainable Energy Rev. 2020;127:109883. PubMed PMC

Klemeš J., Dhole V.R., Raissi K., Perry S.J., Puigjaner L. Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Appl. Therm. Eng. 1997;17:993–1003. doi: 10.1016/S1359-4311(96)00087-7. DOI

Klemeš J.J., Varbanov P.V., Walmsley T.G., Jia X.X. New directions in the implementation of Pinch Methodology (PM) Renewable Sustainable Energy Rev. 2018;98:439–468.

Klemeš J.J., Wang Q.W., Varbanov P.S., Zeng M., Chin H.H., Lal N.S., Li N.Q., Wang B., Wang X.C., Walmsley T.G. Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation. Renewable Sustainable Energy Rev. 2020;120:p.109644.

Kohonen T. 3rd ed., Springer Series in Information Sciences. Springer-Verlag; Berlin, Heidelberg, Germany: 1989. Self-Organization and Associative Memory.

Koochaki J., Bokhorst J.A.C., Wortmann H., Klingenberg W. Condition based maintenance in the context of opportunistic maintenance. Int. J. Prod. Res. 2012;50:6918–6929. doi: 10.1080/00207543.2011.636924. DOI

Kopanos G.M., Xenos D.P., Cicciotti M., Pistikopoulos E.N., Thornhill N.F. Optimization of a network of compressors in parallel: operational and maintenance planning – the air separation plant case. Appl. Energy. 2015;146:453–470. doi: 10.1016/j.apenergy.2015.01.080. DOI

Kothamasu R., Huang S.H. Adaptive Mamdani fuzzy model for condition-based maintenance. Fuzzy Sets Syst. Theme Model. Control. 2007;158:2715–2733. doi: 10.1016/j.fss.2007.07.004. DOI

Kovacs Z., Orosz A., Friedler F. Synthesis algorithms for the reliability analysis of processing systems. Cent. Eur. J. Oper. Res. 2019;27:573–595.

Krishnasamy L., Khan F., Haddara M. Development of a risk-based maintenance (RBM) strategy for a power-generating plant. J. Loss Prev. Process Ind. 2005;18:69–81. doi: 10.1016/j.jlp.2005.01.002. DOI

Kulshrestha D.K. Operational behaviour of a multicomponent system having stand-by redundancy with opportunistic reparis. Unternehmensforschung Oper. Res. 1968;12:159–172. doi: 10.1007/BF01918325. DOI

Kumar G., Maiti J. Modeling risk based maintenance using fuzzy analytic network process. Expert Syst. Appl. 2012;39:9946–9954. doi: 10.1016/j.eswa.2012.01.004. DOI

Kumar U., Galar D. Maintenance in the era of industry 4.0: issues and challenges. In: Kapur P.K., Kumar U., Verma A.K., editors. Quality, IT and Business Operations: Modeling and Optimization, Springer Proceedings in Business and Economics. Springer Singapore; Singapore: 2018. pp. 231–250. DOI

Labib A. Learning (and unlearning) from failures: 30 years on from Bhopal to Fukushima an analysis through reliability engineering techniques. Process Saf. Environ. Prot. 2015;97:80–90. doi: 10.1016/j.psep.2015.03.008. DOI

Laggoune R., Chateauneuf A., Aissani D. Opportunistic policy for optimal preventive maintenance of a multi-component system in continuous operating units. Comput. Chem. Eng. 2009;33:1499–1510. doi: 10.1016/j.compchemeng.2009.03.003. DOI

Laggoune R., Chateauneuf A., Aissani D. Impact of few failure data on the opportunistic replacement policy for multi-component systems. Reliab. Eng. Syst. Saf. 2010;95:108–119. doi: 10.1016/j.ress.2009.08.007. DOI

Lapa C.M.F., Pereira C.M.N.A., de Barros M.P. A model for preventive maintenance planning by genetic algorithms based in cost and reliability. Reliab. Eng. Syst. Saf. 2006;91:233–240. doi: 10.1016/j.ress.2005.01.004. DOI

Leoni L., BahooToroody A., De Carlo F., Paltrinieri N. Developing a risk-based maintenance model for a Natural Gas Regulating and Metering Station using Bayesian Network. J. Loss Prev. Process Ind. 2019;57:17–24. doi: 10.1016/j.jlp.2018.11.003. DOI

Lewis S.A., Edwards T.G. Smart sensors and system health management tools for avionics and mechanical systems. Presented at the 16th DASC. AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future. Proceedings, 8.5–1. 1997 doi: 10.1109/DASC.1997.637283. DOI

Li G., Li Y., Zhang X., Hou C., He J., Xu B., Chen J. Development of a preventive maintenance strategy for an automatic production line based on group maintenance method. Appl. Sci. 2018;8:1781. doi: 10.3390/app8101781. DOI

Li J., Blumenfeld E.D., Huang N., Alden J. Throughput analysis of production systems: recent advances and future topics. Int. J. Prod. Res. 2009;47:3823–3851. doi: 10.1080/00207540701829752. DOI

Lim H.-G., Han S.H. Systematic treatment of circular logics in a fault tree analysis. Nucl. Eng. Des. 2012;245:172–179. doi: 10.1016/j.nucengdes.2011.12.016. DOI

Linnhoff B., Townsend D.W., Boland D., Hewitt G.F., Thomas B.E.A., Guy A.R., Marsland R.H. 2nd ed. IChemE; Rugby, UK: 1982. A user guide on process integration for the efficient use of energy.

Macchi M., Kristjanpoller F., Garetti M., Arata A., Fumagalli L. Introducing buffer inventories in the RBD analysis of process production systems. Reliab. Eng. Syst. Saf. 2012;104:84–95. doi: 10.1016/j.ress.2012.03.015. DOI

Magargle R., Johnson L., Mandloi P., Davoudabadi P., Kesarkar O., Krishnaswamy S., Batteh J., Pitchaikani A. A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system. The 12th International Modelica Conference; Prague, Czech Republic, May; 2017. pp. 35–46. DOI

Marquez A.C., Gupta J.N.D., Heguedas A.S. Maintenance policies for a production system with constrained production rate and buffer capacity. Int. J. Prod. Res. 2003;41:1909–1926. doi: 10.1080/0020754031000123877. DOI

Marseguerra M., Zio E., Podofillini L. Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation. Reliab. Eng. Syst. Saf. 2002;77:151–165. doi: 10.1016/S0951-8320(02)00043-1. DOI

Mat Dan R., Zulkafli N.I. Investigation of maintenance performance for a gasification process unit using Weibull analysis. J. Qual. Mainten. Eng. 2016;22:252–263. doi: 10.1108/JQME-08-2015-0039. DOI

Mauney D.A., Schmidt M.E.G. Fully quantitative predictive maintenance/inspection planning optimization for chemical process plant components. Process Saf. Prog. 1997;16:262–268. doi: 10.1002/prs.680160411. DOI

McCall J.J. Maintenance policies for stochastically failing equipment: a survey. Manage. Sci. 1965;11:493–524.

Megow N., Möhring R.H., Schulz J. Decision support and optimization in shutdown and turnaround scheduling. INFORMS J. Comput. 2010;23:189–204. doi: 10.1287/ijoc.1100.0393. DOI

Melani A.H.A., Murad C.A., Caminada Netto A., de Souza G.F.M., Nabeta S.I. Criticality-based maintenance of a coal-fired power plant. Energy. 2018;147:767–781. doi: 10.1016/j.energy.2018.01.048. DOI

Miyata S., Akashi Y., Lim J., Tanaka K., Tanaka S., Kuwahara Y. Model-based fault detection and diagnosis using convolutional neural networks in heat source system with water thermal storage tanks. IOP Conf. Ser. Earth Environ. Sci. 2019;238:012070. doi: 10.1088/1755-1315/238/1/012070. DOI

Moghaddam K.S. Multi-objective preventive maintenance and replacement scheduling in a manufacturing system using goal programming. Int. J. Prod. Econ. 2013;146:704–716. doi: 10.1016/j.ijpe.2013.08.027. DOI

Mohamed A.M., Saad S.M. Development of risk assessment model for equipment within the petroleum industry. IFAC – Papers OnLine. 2016;49:37–42. doi: 10.1016/j.ifacol.2016.11.007. DOI

Mohamed R.B., Hassan C.R.B.C., Hamid M.D. Developing a risk-based inspection practices maturity model for Malaysian industries. J. Loss Prev. Process Ind. 2018;56:217–230. doi: 10.1016/j.jlp.2018.08.011. DOI

Montgomery R.L., Serratella C. 2002. Risk-Based Maintenance: A New Vision for Asset Integrity Management; pp. 151–165. DOI

Nahas N. Buffer allocation and preventive maintenance optimization in unreliable production lines. J. Intell. Manuf. 2017;28:85–93. doi: 10.1007/s10845-014-0963-y. DOI

Natarajan S., Ghosh K., Srinivasan R. An ontology for distributed process supervision of large-scale chemical plants. Comput. Chem. Eng. 2012;46:124–140. doi: 10.1016/j.compchemeng.2012.06.009. DOI

Newell E.E.G. Oil analysis cost-effective machine condition monitoring technique. Ind. Lubric. Tribol. 1999;51:119–124. doi: 10.1108/00368799910268066. DOI

Nguyen D., Bagajewicz M. Optimization of preventive maintenance scheduling in processing plants. Comput. Aided Chem. Eng. 2008:319–324. doi: 10.1016/S1570-7946(08)80058-2. DOI

Nguyen D., Bagajewicz M. Optimization of preventive maintenance in chemical process plants. Ind. Eng. Chem. Res. 2010;49:4329–4339. doi: 10.1021/ie901433b. DOI

Nikoo M., Zarfam P., Sayahpour H. Determination of compressive strength of concrete using Self Organization Feature Map (SOFM) Eng. Comput. 2013;31 doi: 10.1007/s00366-013-0334-x. DOI

Nilsson J., Wojciechowski A., Stromberg A., Patriksson M., Bertling L. An opportunistic maintenance optimization model for shaft seals in feed-water pump systems in nuclear power plants. Presented at the 2009 IEEE Bucharest PowerTech. 2009:1–8. doi: 10.1109/PTC.2009.5281892. DOI

Niu G., Yang B.-S., Pecht M. Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance. Reliab. Eng. Syst. Saf. 2010;95:786–796. doi: 10.1016/j.ress.2010.02.016. DOI

Okoh C., Roy R., Mehnen J., Redding L. Overview of remaining useful life prediction techniques in through-life engineering services. Proc. CIRP. 2014;16:158–163. doi: 10.1016/j.procir.2014.02.006. DOI

Okoh P., Haugen S. A study of maintenance-related major accident cases in the 21st century. Process Saf. Environ. Prot. Loss Prev. 2013. 2014;92:346–356. doi: 10.1016/j.psep.2014.03.001. DOI

OREDA . 6th ed. DNV; Høvik, Norway: 2015. Offshore Reliability Data Handbook.

Orosz Á., Friedler F. Synthesis technology for failure analysis and corrective actions in process systems engineering. Comput. Aided Chem. Eng. 2019:1405–1410. doi: 10.1016/B978-0-12-818634-3.50235-6. DOI

Orosz A., Friedler F., Varbanov P.S., Klemeš J.J. Systems reliability, footprints Sustainability. Chem. Eng. Trans. 2018;1(63):121–126. doi: 10.3303/CET1863021. DOI

Orosz Á., Kovács Z., Friedler F. Synthesis of heat integrated processing systems taking into account reliability. Energy. 2019;181:214–225. doi: 10.1016/j.energy.2019.05.173. DOI

Pan T.C., Shen J.F., Mao X.M., Qu M. A synthetic assessment model for the condition of major equipment in nuclear power plants. In: He Y., Qing X., editors. Automatic Control, Mechatronics and Industrial Engineering: Proceedings of the International Conference on Automatic Control, Mechatronics and Industrial Engineering (ACMIE 2018), Suzhou, China. CRC Press; London, UK: 2019. pp. 129–139. DOI

Petchrompo S., Parlikad A.K. A review of asset management literature on multi-asset systems. Reliab. Eng. Syst. Saf. 2019;181:181–201. doi: 10.1016/j.ress.2018.09.009. DOI

P-Graph, 2019. <www.p-graph.com/> (accessed 10.04.20).

Piadeh F., Ahmadi M., Behzadian K. Reliability assessment for hybrid systems of advanced treatment units of industrial wastewater reuse using combined event tree and fuzzy fault tree analyses. J. Clean. Prod. 2018;201:958–973. doi: 10.1016/j.jclepro.2018.08.052. DOI

Pistikopoulos E.N., Vassiliadis C.G., Arvela J., Papageorgiou L.G. Interactions of maintenance and production planning for multipurpose process plants: a system effectiveness approach. Ind. Eng. Chem. Res. 2001;40:3195–3207. doi: 10.1021/ie000431q. DOI

Pistikopoulos E.N., Vassiliadis C.G., Papageorgiou L.G. Process design for maintainability: an optimization approach. Comput. Chem. Eng. 2000;24:203–208. doi: 10.1016/S0098-1354(00)00514-7. DOI

Postnikov I., Stennikov V., Mednikova E., Penkovskii A. Methodology for optimization of component reliability of heat supply systems, transformative innovations for a sustainable future – Part III. Appl. Energy. 2018;227:365–374. doi: 10.1016/j.apenergy.2017.11.073. DOI

Qinqin C., Jia Q., Yuan Z., Huang L. Environmental risk source management system for the petrochemical industry. Process Saf. Environ. Prot. 2014;92:251–260. doi: 10.1016/j.psep.2013.01.004. DOI

Radner R., Jorgenson D.W. opportunistic replacement of a single part in the presence of several monitored parts. Manage. Sci. 1963;10:70–84. doi: 10.1287/mnsc.10.1.70. DOI

Rajagopalan S., Sahinidis N., Amaran S., Agarwal A., Bury S., Sharda B., Wassick J. Risk analysis of turnaround reschedule planning in integrated chemical sites. Comput. Chem. Eng. 2017;107 doi: 10.1016/j.compchemeng.2017.04.017. DOI

Ramesh P.G., Dutta S.J., Neog S.S., Baishya P., Bezbaruah I. Implementation of predictive maintenance systems in remotely located process plants under industry 4.0 scenario. In: Karanki D.R., Vinod G., Ajit S., editors. Advances in RAMS Engineering: In Honor of Professor Ajit Kumar Verma on his 60th Birthday. Springer Series in Reliability Engineering. Springer International Publishing; Cham: 2020. pp. 293–326. DOI

Rathnayaka S., Khan F., Amyotte P. SHIPP methodology: predictive accident modeling approach. Part I: Methodology and model description. Process Saf. Environ. Prot. 2011;89:151–164. doi: 10.1016/j.psep.2011.01.002. DOI

Reis M.S., Braatz R.D., Chiang L.H. 2016. Big Data: Challenges and Future Research Directions. < https://www.aiche.org/resources/publications/cep/2016/march/big-data-success-stories-process-industries> (accessed 20.04.20)

Ricker N.L., Lee J.H. Nonlinear modeling and state estimation for the Tennessee Eastman challenge process. Comput. Chem. Eng. 1995;19:983–1005. doi: 10.1016/0098-1354(94)00113-3. DOI

Rustogi K., Strusevich V.A. Single machine scheduling with general positional deterioration and rate-modifying maintenance. Omega Special Issue Forecast. Manage. Sci. 2012;40:791–804. doi: 10.1016/j.omega.2011.12.007. DOI

Sahoo T., Sarkar P.K., Sarkar A.K., Iocl C.M. Maintenance optimization for critical equipments in process industries based on FMECA method. Int. J. Eng. Innov. Technol. 2014;3(10) April 2014.

Saidur R., Rahim N.A., Hasanuzzaman M. A review on compressed-air energy use and energy savings. Renewable Sustainable Energy Rev. 2010;14:1135–1153. doi: 10.1016/j.rser.2009.11.013. DOI

Sen D., Fashokun A., Angelotti R., Brooks M., Bhaumik H., Card C., Lodhi A., Godrej A., Chung C. An artificial intelligence platform for asset management contributes to better decision-making tools for operations, maintenance, and utility management. Water Environ. Res. 2018;90:355–375. doi: 10.2175/106143017X15131012152762. PubMed DOI

Shafiee M. Maintenance strategy selection problem: an MCDM overview. J. Qual. Mainten. Eng. 2015;21:378–402. doi: 10.1108/JQME-09-2013-0063. DOI

Sharma A., Yadava G.S., Deshmukh S.G. A literature review and future perspectives on maintenance optimization. J. Qual. Mainten. Eng. 2011;17:5–25. doi: 10.1108/13552511111116222. DOI

Sheikhalishahi M., Azadeh A., Pintelon L. Dynamic maintenance planning approach by considering grouping strategy and human factors. Process Saf. Environ. Prot. 2017;107:289–298. doi: 10.1016/j.psep.2017.02.015. DOI

Sheikhalishahi M., Pintelon L., Azadeh A. An integrated approach for maintenance planning by considering human factors: application to a petrochemical plant. Process Saf. Environ. Prot. 2017;109:400–409. doi: 10.1016/j.psep.2017.04.016. DOI

Shey-Huei Sheu, Griffith W.S., Toshio Nakagawa T. Extended optimal replacement model with random minimal repair costs. Eur. J. Oper. Res. 1995;85:636–649. doi: 10.1016/0377-2217(93)E0364-4. DOI

Shi H., Zeng J. Real-time prediction of remaining useful life and preventive opportunistic maintenance strategy for multi-component systems considering stochastic dependence. Comput. Ind. Eng. 2016;93:192–204. doi: 10.1016/j.cie.2015.12.016. DOI

Shin J.-H., Jun H.-B. On condition based maintenance policy. J. Comput. Des. Eng. 2015;2:119–127. doi: 10.1016/j.jcde.2014.12.006. DOI

Sikos L., Klemeš J. Reliability, availability and maintenance optimisation of heat exchanger networks. Appl. Therm. Eng. 2010;30:63–69. doi: 10.1016/j.applthermaleng.2009.02.013. 2010. DOI

Silva E.C. Why are major accidents still occurring? Process Saf. Prog. 2016;35:253–257. doi: 10.1002/prs.11795. DOI

Silva M., Recalde L. On fluidification of Petri Nets: from discrete to hybrid and continuous models. Annu. Rev. Control. 2004;28:253–266. doi: 10.1016/j.arcontrol.2004.05.002. DOI

Sperotto A., Molina J.-L., Torresan S., Critto A., Marcomini A. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: a multi-risk perspective. J. Environ. Manage. 2017;202:320–331. doi: 10.1016/j.jenvman.2017.07.044. PubMed DOI

Srivastava P., Khanduja D., Agrawal V.P. Integrating agile thinking into maintenance strategy performance analysis. IJPMB. 2018;8:228. doi: 10.1504/IJPMB.2018.090785. DOI

Susto G.A., Schirru A., Pampuri S., McLoone S., Beghi A. Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform. 2015;11:812–820. doi: 10.1109/TII.2014.2349359. DOI

Tan J.S., Kramer M.A. A general framework for preventive maintenance optimization in chemical process operations. Comput. Chem. Eng. 1997;21:1451–1469. doi: 10.1016/S0098-1354(97)88493-1. DOI

Tan R.R., Aziz M.K.A., Ng D.K.S., Foo D.C.Y., Lam H.L. Pinch analysis-based approach to industrial safety risk and environmental management. Clean Technol. Environ. Policy. 2016;18:2107–2117. doi: 10.1007/s10098-016-1101-7. DOI

Terrazas-Moreno S., Grossmann I., Wassick J., Bury S., Akiya N. An efficient method for optimal design of large-scale integrated chemical production sites with endogenous uncertainty. Comput. Chem. Eng. 2011;37 doi: 10.1016/j.compchemeng.2011.10.005. DOI

Terrazas-Moreno S., Grossmann I.E., Wassick J.M., Bury S.J. Optimal design of reliable integrated chemical production sites. Comput. Chem. Eng. 2010;34:1919–1936. doi: 10.1016/j.compchemeng.2010.07.027. DOI

Thodi P., Khan F., Hassan J. Availability analysis of a LNG processing plant using the Markov process. J. Qual. Mainten. Eng. 2016;22:302–320. doi: 10.1108/JQME-05-2012-0018. DOI

Trzcinski P., Markowski M. Diagnosis of the fouling effects in a shell and tube heat exchanger using artificial neural network. Chem. Eng. Trans. 2018;70:355–360. doi: 10.3303/CET1870060. DOI

Tseng T.-L.(Bill), Hvolby H.-H., Fraser K. Maintenance management models: a study of the published literature to identify empirical evidence: a greater practical focus is needed. Int. J. Qual. Reliab. Manange. 2015;32:635–664. doi: 10.1108/IJQRM-11-2013-0185. DOI

Vassiliadis C.G., Pistikopoulos E.N. Maintenance-based strategies for environmental risk minimization in the process industries. J. Hazard. Mater. 2000;71:481–501. PubMed

Vianello C., Milazzo M.F., Guerrini L., Mura A., Maschio G. A risk-based tool to support the inspection management in chemical plants. J. Loss Prev. Process Ind. 2016;41:154–168. doi: 10.1016/j.jlp.2016.03.005. DOI

Vilarinho S., Lopes I., Oliveira J.A. Preventive maintenance decisions through maintenance optimization, Modena, Italy. Proc. Manuf. 2017;11:1170–1177. doi: 10.1016/j.promfg.2017.07.241. DOI

Villa V., Paltrinieri N., Khan F., Cozzani V. Towards dynamic risk analysis: a review of the risk assessment approach and its limitations in the chemical process industry. Saf. Sci. 2016;89:77–93. doi: 10.1016/j.ssci.2016.06.002. DOI

Vinod G., Sharma P.K., Santosh T.V., Hari Prasad M., Vaze K.K. New approach for risk based inspection of H2S based process plants. Ann. Nucl. Energy. 2014;66:13–19. doi: 10.1016/j.anucene.2013.08.042. DOI

Wang K., Djurdjanovic D. Joint optimization of preventive maintenance, spare parts inventory and transportation options for systems of geographically distributed assets. Machines. 2018;6:55. doi: 10.3390/machines6040055. DOI

Wang W. An overview of the recent advances in delay-time-based maintenance modelling. Reliab. Eng. Syst. Saf. 2012;106:165–178. doi: 10.1016/j.ress.2012.04.004. DOI

Wang Y., Deng C., Wu J., Wang Y., Xiong Y. A corrective maintenance scheme for engineering equipment. Eng. Fail. Anal. 2014;36:269–283. doi: 10.1016/j.engfailanal.2013.10.006. DOI

Wang Z., Wang W., Hu C., Liu X. An integrated decision model for critical component spare parts ordering and condition based replacement with prognostic information. Chem. Eng. Trans. 2013;33:1063–1068. doi: 10.3303/CET1333178. DOI

Weber P., Medina-Oliva G., Simon C., Iung B. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Eng. Appl. Artif. Intell. 2012;25:671–682. doi: 10.1016/j.engappai.2010.06.002. DOI

Xiang Y., Cassady C.R., Pohl E.A. Optimal maintenance policies for systems subject to a Markovian operating environment. Comput. Ind. Eng. 2012;62:190–197. doi: 10.1016/j.cie.2011.09.006. DOI

Yang L., Zhao Y., Peng R., Ma X. Opportunistic maintenance of production systems subject to random wait time and multiple control limits. J. Manuf. Syst. 2018;47:12–34. doi: 10.1016/j.jmsy.2018.02.003. DOI

Yadava G.s., Deshmukh S.g., Sharma A. A literature review and future perspectives on maintenance optimization. J. Qual. Maintenance Eng. 2011;17:5–25. doi: 10.1108/13552511111116222. DOI

Yazdi M., Nedjati A., Abbassi R. Fuzzy dynamic risk-based maintenance investment optimization for offshore process facilities. J. Loss Prev. Process Ind. 2019;57:194–207. doi: 10.1016/j.jlp.2018.11.014. DOI

Zhang L., Hu J. Safety prognostic technology in complex petroleum engineering systems: progress, challenges and emerging trends. Pet. Sci. 2013;10:486–493. doi: 10.1007/s12182-013-0299-9. DOI

Zhang Z., Wu S., Li B., Lee S. Optimal maintenance policy for multi-component systems under Markovian environment changes. Expert Syst. Appl. 2013;40:7391–7399. doi: 10.1016/j.eswa.2013.07.003. DOI

Zhao F., Wang W., Peng R. Delay-time-based preventive maintenance modelling for a production plant: a case study in a steel mill. J. Oper. Res. Soc. 2015;66:2015–2024. doi: 10.1057/jors.2015.20. DOI

Zhao Z., Wang F., Jia M., Wang S. Predictive maintenance policy based on process data. Chemometr. Intell. Lab. Syst. 2010;103:137–143. doi: 10.1016/j.chemolab.2010.06.009. DOI

Zhen X., Vinnem J.E., Peng C., Huang Y. Quantitative risk modelling of maintenance work on major offshore process equipment. J. Loss Prev. Process Ind. 2018;56:430–443. doi: 10.1016/j.jlp.2018.10.004. DOI

Zheng X. All opportunity-triggered replacement policy for multiple-unit systems. IEEE Trans. Reliab. 1995;44:648–652. doi: 10.1109/24.475996. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...