Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimer's disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Indie Médium print
Typ dokumentu časopisecké články
PubMed
33063745
PubMed Central
PMC8067920
DOI
10.4103/1673-5374.295340
PII: NeuralRegenRes_2021_16_4_796_295340
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, RANTES, biomarker, central nervous system, cognitive impairment, inflammation,
- Publikační typ
- časopisecké články MeSH
Alzheimer's disease (AD) is the most common type of dementia, but it is very difficult to diagnose with certainty, so many AD studies have attempted to find early and relevant diagnostic markers. Regulated upon activation, normal T cell expressed and secreted (RANTES, also known as C-C chemokine ligand) is a chemokine involved in the migration of T cells and other lymphoid cells. Changes in RANTES levels and its expression in blood or in cerebrospinal fluid have been reported in some neurodegenerative diseases, such as Parkinson's disease and multiple sclerosis, but also in metabolic diseases in which inflammation plays a role. The aim of this observational study was to assess RANTES levels in peripheral blood as clinical indicators of AD. Plasma levels of RANTES were investigated in 85 AD patients in a relatively early phase of AD (median 8.5 months after diagnosis; 39 men and 46 women; average age 75.7 years), and in 78 control subjects (24 men and 54 women; average age 66 years). We found much higher plasma levels of RANTES in AD patients compared to controls. A negative correlation of RANTES levels with age, disease duration, Fazekas scale score, and the medial temporal lobe atrophy (MTA) score (Scheltens's scale) was found in AD patients, i.e., the higher levels corresponded to earlier stages of the disease. Plasma RANTES levels were not correlated with cognitive scores. In AD patients, RANTES levels were positively correlated with the levels of pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α, which is consistent with the well-known fact that AD is associated with inflammatory processes. RANTES levels were also positively correlated with insulin levels in AD patients, with insulin resistance (HOMA-R) and pancreatic beta cell function (HOMA-F). This study evaluated several clinical and metabolic factors that may affect plasma levels of RANTES, but these factors could not explain the increases in RANTES levels observed in AD patients. Plasma levels of RANTES appear to be an interesting peripheral marker for early stages of AD. The study was approved by the Ethics Committee of Institute of Endocrinology, Prague, Czech Republic on July 22, 2011.
2 Internal Medicine Clinic 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Molecular Endocrinology Institute of Endocrinology Prague Czech Republic
Zobrazit více v PubMed
Aguilar-Valles A, Inoue W, Rummel C, Luheshi GN. Obesity, adipokines and neuroinflammation. Neuropharmacology. 2015;96:124–134. PubMed
Albert V, Subramanian A, Agrawal D, Bhoi SK, Pallavi P, Mukhopadhayay AK. RANTES levels in peripheral blood, CSF and contused brain tissue as a marker for outcome in traumatic brain injury (TBI) patients. BMC Res Notes. 2017;10:139. PubMed PMC
Aldinucci D, Colombatti A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm. 2014;2014:292376. PubMed PMC
Alzheimer’s Disease International. [Accessed April 4, 2017];World Alzheimer Report 2015: The Global Impact of Dementia. 2015 https://wwwalzcouk/research/world-report-2015, 492017 .
Appay V, Rowland-Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol. 2001;22:83–87. PubMed
Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev. 2016;64:272–287. PubMed
Bhangoo S, Ren D, Miller RJ, Henry KJ, Lineswala J, Hamdouchi C, Li B, Monahan PE, Chan DM, Ripsch MS, White FA. Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: a mechanism for the development of chronic sensitization of peripheral nociceptors. Mol Pain. 2017;12:3–38. PubMed PMC
Bruno V, Copani A, Besong G, Scoto G, Nicoletti F. Neuroprotective activity of chemokines against N-methyl-D-aspartate or beta-amyloid-induced toxicity in culture. Eur J Pharmacol. 2000;399:117–121. PubMed
Bruunsgaard H, Pedersen M, Pedersen BK. Aging and proinflammatory cytokines. Curr Opin Hematol. 2001;8:131–136. PubMed
Chou SY, Ajouy R, Changou CA, Hsieh YT, Wang YK, Hoffer B. CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5. Sci Rep. 2016;6:37659. PubMed PMC
Cuello AC. Early and late CNS inflammation in Alzheimer’s disease: two extremes of a continuum. Trends Pharmacol Sci. 2017;38:956–966. PubMed
Domingues C, da Cruz E Silva OAB, Henriques AG. Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr Alzheimer Res. 2017;14:870–882. PubMed PMC
Dworacka M, Krzyżagórska E, Iskakova S, Bekmukhambetov Y, Urazayev O, Dworacki G. Increased circulating RANTES in type 2 diabetes. Eur Cytokine Netw. 2014;25:46–51. PubMed
Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain. 2017;140:792–803. PubMed PMC
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149:351–356. PubMed
Gong C, Wei D, Wang Y, Ma J, Yuan C, Zhang W, Yu G, Zhao Y. A meta-analysis of C-reactive protein in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2016;31:194–200. PubMed PMC
Hernández-Romero MC, Delgado-Cortés MJ, Sarmiento M, de Pablos RM, Espinosa-Oliva AM, Argüelles S, Bández MJ, Villarán RF, Mauriño R, Santiago M, Venero JL, Herrera AJ, Cano J, Machado A. Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. Neurotoxicology. 2012;33:347–360. PubMed
Holmes C, Butchart J. Systemic inflammation and Alzheimer’s disease. Biochem Soc Trans. 2011;39:898–901. PubMed
Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015;12:114. PubMed PMC
Iarlori C, Gambi D, Gambi F, Lucci I, Feliciani C, Salvatore M, Reale M. Expression and production of two selected beta-chemokines in peripheral blood mononuclear cells from patients with Alzheimer’s disease. Exp Gerontol. 2005;40:605–611. PubMed
Julian A, Dugast E, Ragot S, Krolak-Salmon P, Berrut G, Dantoine T, Hommet C, Hanon O, Page G, Paccalin M. There is no correlation between peripheral inflammation and cognitive status at diagnosis in Alhzeimer´s disease. Aging Clin Exp Res. 2015;27:589–594. PubMed
Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A. Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine. 2016;1:1003. PubMed PMC
Lumpkins K, Bochicchio GV, Zagol B, Ulloa K, Simard JM, Schaub S, Meyer W, Scalea T. Plasma levels of the beta chemokine regulated upon activation, normal T cell expressed, and secreted (RANTES) correlate with severe brain injury. J Trauma. 2008;64:358–361. PubMed
Marksteiner J, Kemmler G, Weiss EM, Knaus G, Ullrich C, Mechtcheriakov S, Oberbauer H, Auffinger S, Hinterhölzl J, Hinterhuber H, Humpel C. Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2011;32:539–540. PubMed PMC
Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–594. PubMed
Matter CM, Handschin C. RANTES (Regulated on activation, normal T cell expressed and secreted), inflammation, obesity, and the metabolic syndrome. Circulation. 2007;115:946–948. PubMed
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. PubMed
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269. PubMed PMC
Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, Sagan A, Wu J, Vinh A, Marvar PJ, Guzik B, Podolec J, Drummond G, Lob HE, Harrison DG, Guzik TJ. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 2016;30:1987–1999. PubMed PMC
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 106:3143–3421. PubMed
Niemantsverdriet E, Feyen BFE, Le Bastard N, Martin JJ, Goeman J, De Deyn PP, Bjerke M, Engelborghs S. Added aiagnostic value of cerebrospinal fluid biomarkers for differential dementia diagnosis in an autopsy-confirmed cohort. J Alzheimers Dis. 2018;63:373–381. PubMed PMC
Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S. Significance of chemokines and activated platelets in patients with diabetes. Clin Exp Immunol. 2000;121:437–443. PubMed PMC
Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, Ho RC. IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep. 2018;8:12050. PubMed PMC
Ogłodek EA, Szota AM, Moś DM, Araszkiewicz A, Szromek AR. Serum concentrations of chemokines (CCL-5 and CXCL-12), chemokine receptors (CCR-5 and CXCR-4), and IL-6 in patients with posttraumatic stress disorder and avoidant personality disorder. Pharmacol Rep. 2015;67:1251–1258. PubMed
Paterson RW, Slattery CF, Poole T, Nicholas JM, Magdalinou NK, Toombs J, Chapman MD, Lunn MP, Heslegrave AJ, Foiani MS, Weston PSJ, Keshavan A, Rohrer JD, Rossor MN, Warren JD, Mummery CJ, Blennow K, Fox NC, Zetterberg H, Schott JM. Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimers Res Ther. 2018;10:32. PubMed PMC
Pellicanò M, Bulati M, Buffa S, Barbagallo M, Di Prima A, Misiano G, Picone P, Di Carlo M, Nuzzo D, Candore G, Vasto S, Lio D, Caruso C, Colonna-Romano G. Systemic immune responses in Alzheimer’s disease: in vitro mononuclear cell activation and cytokine production. J Alzheimers Dis. 2010;21:181–192. PubMed
Pittaluga A. CCL5-glutamate cross-talk in astrocyte-neuron communication in multiple sclerosis. Front Immunol. 2017;8:1079. PubMed PMC
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1037–1045. PubMed PMC
Roh YS, Seki E. Chemokines and chemokine receptors in the development of NAFLD. Adv Exp Med Biol. 2018;1061:45–53. PubMed
Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic brain injury. Science. 2016;353:783–785. PubMed PMC
Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Invest. 2017;127:3240–3249. PubMed PMC
Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55:967–972. PubMed PMC
Schmid A, Bala M, Leszczak S, Ober I, Buechler C, Karrasch T. Pro-inflammatory chemokines CCL2, chemerin, IP-10 and RANTES in human serum during an oral lipid tolerance test. Cytokine. 2016;80:56–63. PubMed
Stuart MJ, Baune BT. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: A systematic review of biomarker studies. Neurosci Biobehav Rev. 2014;42:93–115. PubMed
Tang P, Chong L, Li X, Liu Y, Liu P, Hou C, Li R. Correlation between serum RANTES levels and the severity of Parkinson’s disease. Oxid Med Cell Longev. 2014;2014:208408. PubMed PMC
Tripathy D, Thirumangalakudi L, Grammas P. RANTES upregulation in the Alzheimer´s disease brain: a possible neuroprotective role. Neurobiol Aging. 2010;31:8–16. PubMed PMC
Ubogu EE, Callahan MK, Tucky BH, Ransohoff RM. Determinants of CCL5-driven mononuclear cell migration across the blood-brain barrier. Implications for therapeutically modulating neuroinflammation. J Neuroimmunol. 2006;179:132–144. PubMed
Ueba T, Nomura S, Inami N, Yokoi T, Inoue T. Elevated RANTES level is associated with metabolic syndrome and correlated with activated plateles associated markers in healthy younger men. Clin Appl Thromb Hemost. 2014;20:813–818. PubMed
Vérité J, Page G, Paccalin M, Julian A, Janet T. Differential chemokine expression under the control of peripheral blood mononuclear cells issued from Alzheimer’s patients in a human blood brain barrier model. PLoS One. 2018;13:e0201232. PubMed PMC
Ward RJ, Dexter DT, Crichton RR. Ageing, neuroinflammation and neurodegeneration. Front Biosci (Schol Ed) 2015;7:189–204. PubMed
Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, Sweeney JF, Peterson LE, Chan L, Smith CW, Ballantyne CM. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115:1029–1038. PubMed
Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond