Experimental Measurements of Mechanical Properties of PUR Foam Used for Testing Medical Devices and Instruments Depending on Temperature, Density and Strain Rate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-25821S
Czech Science Foundation
PubMed
33066467
PubMed Central
PMC7602287
DOI
10.3390/ma13204560
PII: ma13204560
Knihovny.cz E-zdroje
- Klíčová slova
- mechanical properties, polyurethane foam, rigid polyurethane foam, temperature, thermal loading,
- Publikační typ
- časopisecké články MeSH
Rigid polyurethane (PUR) foam is products used as a biomedical material for medical device testing. Thermal stability is a very important parameter for evaluating the feasibility of use for testing surgical instrument load during drilling. This work aimed to perform experimental measurements to determine the dependence of the mechanical properties of a certified PUR on temperature, strain rate and density. Experimental measurements were realised for three types of the PUR samples with different density 10, 25 and 40 pounds per cubic foot. The samples were characterised in terms of their mechanical properties evaluated from tensile and compression tests at temperatures of 25 °C, 90 °C and 155 °C. Furthermore, the structures of the samples were characterised using optical microscope, their thermal properties were characterised by thermogravimetric analysis, and their density and stiffness with the effect of temperature was monitored. The results show that it is optimal not only for mechanical testing but also for testing surgical instruments that generate heat during machining. On the basis of experimental measurements and evaluations of the obtained values, the tested materials are suitable for mechanical testing of medical devices. At the same time, this material is also suitable for testing surgical instruments that generate heat during machining.
Zobrazit více v PubMed
Gama N., Ferreira A., Barros-Timmons A. Polyurethane Foams: Past, Present, and Future. Materials. 2018;11:1841. doi: 10.3390/ma11101841. PubMed DOI PMC
Harith I.K. Study on polyurethane foamed concrete for use in structural applications. Case Stud. Constr. Mater. 2018;8:79–86. doi: 10.1016/j.cscm.2017.11.005. DOI
Wu H., Shu Y., Liu Y. Engineering Performance of Polyurethane Bonded Aggregates. Mat. Sci. 2017;23:166–172. doi: 10.5755/j01.ms.23.2.15798. DOI
Kumar A., Gupta R. Fundamentals of Polymer Engineering. 3rd ed. CRC Press; Boca Raton, FL, USA: 2018.
Weil E., Levchik S. Commercial Flame Retardancy of Polyurethanes. J. Fire Sci. 2004;22:183–210. doi: 10.1177/0734904104040259. DOI
Nunes R., Fonseca J., Pereira M. Polymer-filler Interactions and Mechanical properties of a polyurethane elastomer. Polymer Test. 2000;19:93–103. doi: 10.1016/S0142-9418(98)00075-0. DOI
Hatakeyama H., Matsumura H., Hatakeyama T. Glass transition and thermal degradation of rigid polyurethane foams derived from castor oil-molasses polyols. J. Therm. Anal. Calorim. 2013;111:1545–1552. doi: 10.1007/s10973-012-2501-5. DOI
Hollensteiner M., Esterer B., Furst D., Schrempf A., Augat P. Development of open-cell polyurethane-based bone surrogates for biomechanical testing of pedicle screws. J. Mech. Behav. Biomed. 2019;97:247–253. doi: 10.1016/j.jmbbm.2019.05.038. PubMed DOI
Oroszlany A., Nagy P., Kovacs J.G. Compressive Properties of Commercially Available PVC Foams Intended for Use as Mechanical Models for Human Cancellous Bone. Acta Polytech. Hung. 2015;12:89–101.
Amirouche F., Solitro G.F., Magnan B.P. Stability and Spine Pedicle Screws Fixation Strength—A Comparative Study of Bone Density and Insertion Angle. Spine Def. 2016;4:261–267. doi: 10.1016/j.jspd.2015.12.008. PubMed DOI
Er M.S., Altinel L., Eroglu M., Verim O., Demir T., Atmaca H. Suture anchor fixation strength with or without augmentation in osteopenic and severely osteoporotic bones in rotator cuff repair: A biomechanical study on polyurethane foam model. J. Orthop. Surg. Res. 2014;48:247–253. doi: 10.1186/1749-799X-9-48. PubMed DOI PMC
Nowak B. Experimental study on the loosening of pedicle screws implanted to synthetic bone vertebra models and under non-pull-out mechanical loads. J. Mech. Behav. Biomed. 2019;98:200–204. doi: 10.1016/j.jmbbm.2019.06.013. PubMed DOI
Alam K. Experimental measurements of temperatures in drilling cortical bone using thermocouples. Sci. Iran. Trans. B. 2015;22:487–492.
Bogovic A., Svete A., Rupnik K., Bajsic I. Experimental analysis of the temperature rise during the simulation of an implant drilling process using experimental designs. Measurement. 2015;63:221–231. doi: 10.1016/j.measurement.2014.11.036. DOI
Cseke A., Heinemann R. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials. Measurement. 2018;51:24–30. doi: 10.1016/j.medengphy.2017.10.009. PubMed DOI
Formela K., Hejna A., Zedler L., Przybysz M., Ryl J., Saeb M.R., Piszczyk L. Structural, thermal and physico-mechanical properties of polyurethane brewers spent grain composite foams modified with ground tire rubber. Ind. Crop. Prod. 2017;108:844–852. doi: 10.1016/j.indcrop.2017.07.047. DOI
Zhang M., Pan H., Zhang L., Hu L., Zhou Y. Study of the mechanical, thermal properties and flame retardancy of ofrigid polyurethane foams prepared from modified castor-oil-basedpolyols. Ind. Crop. Prod. 2014;59:1595–1599. doi: 10.1016/j.indcrop.2014.05.016. DOI
Chen W., Lu F., Winfree N. High-strain-rate Compressive Behavior of a Rigid Polyurethane Foam with Various Densities. Exp. Mech. 2002;42:65–73. doi: 10.1007/BF02411053. DOI
Linul E., Marsavina L., Voiconi T., Sadowski T. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression. J. Phys. Conf. Ser. 2013;451:012002. doi: 10.1088/1742-6596/451/1/012002. DOI
Mane J.V., Chandra S., Sharma S., Ali H., Chavan V.M., Manjunath B.S., Patel R.J. Mechanical Property Evaluation of Polyurethane Foam under Quasi-static and Dynamic Strain Rates- An Experimental Study. Procedia Eng. 2017;173:726–731. doi: 10.1016/j.proeng.2016.12.160. DOI
Burgaz E., Kendirlioglu C. Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures. Polym. Test. 2019;77:105930. doi: 10.1016/j.polymertesting.2019.105930. DOI
Wu N., Niu F., Lang W., Yu J., Fu G. Synthesis of reactive phenylphosphoryl glycol ether oligomer and improved flame retardancy and mechanical property of modified rigid polyurethane foams. Mat. Des. 2019;181:107929. doi: 10.1016/j.matdes.2019.107929. DOI
Jin H., Lu W.Y., Scheffel S., Hinnerichs T.D., Neilsen M.K. Full-field characterization of mechanical behavior of polyurethane foams. Int. J. Solids. Struct. 2007;44:6930–6944. doi: 10.1016/j.ijsolstr.2007.03.018. DOI
Liow S.S., Lipik V.T., Widjaja L.K., Venkatraman S.S., Abadie M.J. Enhancing mechanical properties of thermoplastic polyurethane elastomers with 1,3-trimethylene carbonate, epsilon-caprolactone and L-lactide copolymers via soft segment crystallization. Express Polym. Lett. 2011;5:897–910. doi: 10.3144/expresspolymlett.2011.88. DOI
Oh J.H., Bae J.H., Kim J.H., Lee C.S., Lee J.M. Effects of Kevlar pulp on the enhancement of cryogenic mechanical properties of polyurethane foam. Polym. Test. 2019;80:106093. doi: 10.1016/j.polymertesting.2019.106093. DOI
Koumlis S., Lamberson L. Strain Rate Dependent Compressive Response of Open Cell Polyurethane Foam. Exp. Mech. 2019;59:1087–1103. doi: 10.1007/s11340-019-00521-3. DOI
Li P., Guo Y.B., Zhou M.W., Shim V.P. Response of anisotropic polyurethane foam to compression at different loading angles and strain rates. Int. J. Impact. Eng. 2019;127:154–168. doi: 10.1016/j.ijimpeng.2018.12.009. DOI
Saint-Michel F., Chazeau L., Cavaille J.Y., Chabert E. Mechanical properties of high density polyurethane foams: I. Effect of the density. Compos. Sci. Technol. 2006;66:2700–2708. doi: 10.1016/j.compscitech.2006.03.009. DOI
Qiu D., He Y., Yu Z. Investigation on Compression Mechanical Properties of Rigid Polyurethane Foam Treated under Random Vibration Condition: An Experimental and Numerical Simulation Study. Materials. 2019;12:3385. doi: 10.3390/ma12203385. PubMed DOI PMC
Demirel S., Tuna B.E. Evaluation of the cyclic fatigue performance of polyurethane foam in different density and category. Polym. Test. 2019;76:146–153. doi: 10.1016/j.polymertesting.2019.03.019. DOI
Johnson A., Keller T. Mechanical properties of open-cell foam synthetic thoracic vertebrae. J. Mater. Sci. Mater. Med. 2008;19:1317–1323. doi: 10.1007/s10856-007-3158-7. PubMed DOI
Center J., Nguyen T., Pocock N., Eisman J. Volumetric Bone Density at the Femoral Neck as a Common Measure of Hip Fracture Risk for Men and Women. J. Clin. Endocrinol. Metab. 2004;89:2776–2782. doi: 10.1210/jc.2003-030551. PubMed DOI
Lowell S., Shields J., Thomas M., Thommes M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer Science and Business Media; New York, NY, USA: 2012.
Saha M., Kabir M., Jeelani S. Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mat. Sci. Eng. A Struct. 2008;479:213–222. doi: 10.1016/j.msea.2007.06.060. DOI