Crack Protective Layered Architecture of Lead-Free Piezoelectric Energy Harvester in Bistable Configuration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 17-08153S
Czech Science Foundation
PubMed
33066546
PubMed Central
PMC7602165
DOI
10.3390/s20205808
PII: s20205808
Knihovny.cz E-zdroje
- Klíčová slova
- bimorph, bistable energy harvester, energy harvesting, lead free ceramic, nonlinear resonators, piezoelectrics,
- Publikační typ
- časopisecké články MeSH
Kinetic piezoelectric energy harvesters are used to power up ultra-low power devices without batteries as an alternative and eco-friendly source of energy. This paper deals with a novel design of a lead-free multilayer energy harvester based on BaTiO3 ceramics. This material is very brittle and might be cracked in small amplitudes of oscillations. However, the main aim of our development is the design of a crack protective layered architecture that protects an energy harvesting device in very high amplitudes of oscillations. This architecture is described and optimized for chosen geometry and the resulted one degree of freedom coupled electromechanical model is derived. This model could be used in bistable configuration and the model is extended about the nonlinear stiffness produced by auxiliary magnets. The complex bistable vibration energy harvester is simulated to predict operation in a wide range of frequency excitation. It should demonstrate typical operation of designed beam and a stress intensity factor was calculated for layers. The whole system, without presence of cracks, was simulated with an excitation acceleration of amplitude up to 1g. The maximal obtained power was around 2 mW at the frequency around 40 Hz with a maximal tip displacement 7.5 mm. The maximal operating amplitude of this novel design was calculated around 10 mm which is 10-times higher than without protective layers.
Zobrazit více v PubMed
Caliò R., Rongala U., Camboni D., Milazzo M., Stefanini C., de Petris G., Oddo C. Piezoelectric Energy Harvesting Solutions. Sensors. 2014;14:4755–4790. doi: 10.3390/s140304755. PubMed DOI PMC
Bowen C.R., Kim H.A., Weaver P.M., Dunn S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014;7:25. doi: 10.1039/C3EE42454E. DOI
Maurya D., Peddigari M., Kang M.-G., Geng L.D., Sharpes N., Annapureddy V., Palneedi H., Sriramdas R., Yan Y., Song H.-C., et al. Lead-free piezoelectric materials and composites for high power density energy harvesting. J. Mater. Res. 2018;33:2235–2263. doi: 10.1557/jmr.2018.172. DOI
Tofel P., Machu Z., Chlup Z., Hadraba H., Drdlik D., Sevecek O., Majer Z., Holcman V., Hadas Z. Novel layered architecture based on Al2O3/ZrO2/BaTiO3 for SMART piezoceramic electromechanical converters. Eur. Phys. J. Spec. Top. 2019;228:1575–1588. doi: 10.1140/epjst/e2019-800153-0. DOI
Bai Y., Matousek A., Tofel P., Bijalwan V., Nan B., Hughes H., Button T.W. (Ba,Ca)(Zr,Ti)O3 lead-free piezoelectric ceramics—The critical role of processing on properties. J. Eur. Ceram. Soc. 2015;35:3445–3456. doi: 10.1016/j.jeurceramsoc.2015.05.010. DOI
Sappati K.K., Bhadra S. Piezoelectric polymer and paper substrates: A review. Sensors. 2018;18:3605. doi: 10.3390/s18113605. PubMed DOI PMC
Khaligh A. Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art. IEEE Trans. Ind. Electron. 2010;57:850–860. doi: 10.1109/TIE.2009.2024652. DOI
Hadas Z., Smilek J., Rubes O. Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting. In: Fonseca L., Prunnila M., Peiner E., editors. Proceedings of the Volume 10246, Smart Sensors, Actuators, and MEMS VIII; Barcelona, Spain. 8–10 May 2017; p. 1024619.
Gljušćić P., Zelenika S., Blažević D., Kamenar E. Kinetic energy harvesting for wearable medical sensors. Sensors. 2019;19:4922. doi: 10.3390/s19224922. PubMed DOI PMC
Bai Y., Tofel P., Hadas Z., Smilek J., Losak P., Skarvada P., Macku R. Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input. Mech. Syst. Signal Process. 2018;106:303–318. doi: 10.1016/j.ymssp.2018.01.006. DOI
Qing X., Li W., Wang Y., Sun H. Piezoelectric transducer-based structural health monitoring for aircraft applications. Sensors. 2019;19:545. doi: 10.3390/s19030545. PubMed DOI PMC
Ambrosio R., Jimenez A., Mireles J., Moreno M., Monfil K., Heredia H. Study of Piezoelectric Energy Harvesting System Based on PZT. Integr. Ferroelectr. 2011;126:77–86. doi: 10.1080/10584587.2011.574989. DOI
Rubes O., Brablc M., Hadas Z. Verified nonlinear model of piezoelectric energy harvester; Proceedings of the MATEC Web of Conferences; Wuhan, China. 10–12 November 2018;
Sebald G., Kuwano H., Guyomar D., Ducharne B. Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 2011;20:102001. doi: 10.1088/0964-1726/20/10/102001. DOI
Litak G., Friswell M.I., Adhikari S. Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 2010;96:214103. doi: 10.1063/1.3436553. DOI
Rubes O., Hadas Z. Designing, modelling and testing of vibration energy harvester with nonlinear stiffness; Proceedings of the SPIE—The International Society for Optical Engineering; Anaheim, CA, USA. 9–13 April 2017;
Gao Y.J., Leng Y.G., Fan S.B., Lai Z.H. Performance of bistable piezoelectric cantilever vibration energy harvesters with an elastic support external magnet. Smart Mater. Struct. 2014;23:095003. doi: 10.1088/0964-1726/23/9/095003. DOI
Ferrari M., Ferrari V., Guizzetti M., Andò B., Baglio S., Trigona C. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sensors Actuators A Phys. 2010;162:425–431. doi: 10.1016/j.sna.2010.05.022. DOI
Litak G., Friswell M.I., Adhikari S. Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica. 2015;51:1017–1025. doi: 10.1007/s11012-015-0287-9. DOI
Harne R.L., Wang K.W. Prospects for Nonlinear Energy Harvesting Systems Designed Near the Elastic Stability Limit When Driven by Colored Noise. J. Vib. Acoust. 2014;136:021009. doi: 10.1115/1.4026212. DOI
Rubes O., Hadas Z. Design and Simulation of Bistable Piezoceramic Cantilever for Energy Harvesting from Slow Swinging Movement; Proceedings of the—2018 IEEE 18th International Conference on Power Electronics and Motion Control, PEMC 2018; Budapest, Hungary. 26–30 August 2018; pp. 663–668.
Erturk A., Hoffmann J., Inman D.J. A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 2009;94:254102–254105. doi: 10.1063/1.3159815. DOI
Zhang X., Yang W., Zuo M., Tan H., Fan H., Mao Q., Wan X. An arc-shaped piezoelectric bistable vibration energy harvester: Modeling and experiments. Sensors. 2018;18:4472. doi: 10.3390/s18124472. PubMed DOI PMC
Majer Z., Ševeček O., Machů Z., Štegnerová K., Kotoul M. Optimization of Design Parameters of Fracture Resistant Piezoelectric Vibration Energy Harvester. Volume 774. Trans Tech Publications Ltd.; Schwiz, Switzerland: 2018.
SGLAVO V., BERTOLDI M. Design and production of ceramic laminates with high mechanical resistance and reliability. Acta Mater. 2006;54:4929–4937. doi: 10.1016/j.actamat.2006.06.019. DOI
Maca K., Pouchly V., Drdlik D., Hadraba H., Chlup Z. Dilatometric study of anisotropic sintering of alumina/zirconia laminates with controlled fracture behaviour. J. Eur. Ceram. Soc. 2017;37:4287–4295. doi: 10.1016/j.jeurceramsoc.2017.04.030. DOI
Chang Y., Bermejo R., Ševeček O., Messing G.L. Design of alumina-zirconia composites with spatially tailored strength and toughness. J. Eur. Ceram. Soc. 2015;35:631–640. doi: 10.1016/j.jeurceramsoc.2014.09.017. DOI
Bermejo M.R. Ph.D. Thesis. Universitat Politecnica de Catalunya; Barcelona, Spain: 2006. Structural Integrity of Alumina-Zirconia Multilayered Ceramics.
MatWeb BaTiO3 Datasheet. [(accessed on 1 June 2019)];2019 Available online: http://www.matweb.com/search/datasheet.aspx?matguid=216d8486b52746f88d8aad6f667720a0&ckck=1.
Fett T., Diegele E., Munz D., Rizzi G. Weight functions for edge cracks in thin surface layers. Int. J. Fract. 1996;81:205–215. doi: 10.1007/BF00039571. DOI
Bueckner H.F. Novel principle for the computation of stress intensity factors. Z. Fuer Angew. Math. Mech. 1970;50:529.
Sestakova L., Bermejo R., Chlup Z., Danzer R. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates. Int. J. Mater. Res. 2011;102:613–626. doi: 10.3139/146.110523. DOI
Fett T., Munz D., Yang Y.Y. Applicability of the extended Petroski–Achenbach weight function procedure to graded materials. Eng. Fract. Mech. 2000;65:393–403. doi: 10.1016/S0013-7944(99)00138-1. DOI
Ševeček O., Kotoul M., Leguillon D., Martin E., Bermejo R. Understanding the edge crack phenomenon in ceramic laminates. Frat. Integrita Strutt. 2015;9:362–370.
Erturk A. Electromechanical Modeling of Piezoelectric Energy Harvesters. Virginia Tech; Blacksburg, VA, USA: 2009.
Rubes O., Brablc M., Hadas Z. Nonlinear vibration energy harvester: Design and oscillating stability analyses. Mech. Syst. Signal Process. 2018;125:170–184. doi: 10.1016/j.ymssp.2018.07.016. DOI
Rubes O., Brablc M., Hadas Z. Verified Nonlinear Model of Piezoelectric Energy Harvester; Proceedings of the VETOMAC 2018; Lisbon, Portugal. 10–13 September 2018.
Hadraba H., Chlup Z., Drdlík D., Šiška F. Characterisation of mechanical and fracture behaviour of Al2O3/ZrO2/BaTiO3 laminate by indentation. J. Eur. Ceram. Soc. 2020;40:4799–4807. doi: 10.1016/j.jeurceramsoc.2020.04.024. DOI
Drdlik D., Chlup Z., Hadraba H., Drdlikova K. Surface roughness improvement of near net shaped alumina by EPD. J. Aust. Ceram. Soc. 2020;56:721–727. doi: 10.1007/s41779-019-00390-y. DOI