Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
33082453
PubMed Central
PMC7575559
DOI
10.1038/s41598-020-74959-0
PII: 10.1038/s41598-020-74959-0
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny farmakologie MeSH
- antioxidancia farmakologie MeSH
- Fabaceae účinky léků růst a vývoj MeSH
- mořské řasy * MeSH
- regulátory růstu rostlin farmakologie MeSH
- rostlinné extrakty farmakologie MeSH
- zemědělství metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- antioxidancia MeSH
- regulátory růstu rostlin MeSH
- rostlinné extrakty MeSH
The implementation of agronomic activities, based on the use of biostimulants, is an important element of agroecological practices. Therefore, comprehensive research was carried on the use of biostimulants. A field experiment was performed in 2016-2018 with common bean of Mexican Black cultivar. In particular growing seasons, bean plants were treated with Kelpak SL (seaweed extracts) and Terra Sorb Complex (free amino acids) in the form of single and double spraying with two solutions concentrations. According to the obtained data, application of biostimulants increased the yield of bean. Better results were observed after the use of Kelpak SL. The application of preparations influenced nutritional and nutraceutical quality of bean seeds. Terra Sorb Complex caused the highest increase in proteins level. In the light of achieved data, biostimulants in similar level decreased the starch accumulation. The most promising results, in the context of nutraceutical value of bean, were obtained in the case of increasing level of fiber. A positive impact of biostimulants on the seeds antioxidant potential was noted, expressed by the increased synthesis of phenolics, flavonoid, anthocyanins and antioxidant activities. Results of this study, directly indicate economic benefits from the use of biostimulants, which are extremely important to the farmers.
Zobrazit více v PubMed
Le Mire G, et al. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 2016;20:299–313. doi: 10.25518/1780-4507.12717. DOI
Altieri MÁ. Agroecology: A new research and development paradigm for world agriculture. Agric. Ecosyst. Environ. 1989;27:37–46. doi: 10.1016/0167-8809(89)90070-4. DOI
Posmyk MM, Szafrańska K. Biostimulators: A new trend towards solving an old problem. Front. Plant Sci. 2016;7:48. doi: 10.3389/fpls.2016.00748. PubMed DOI PMC
Szparaga A, Kocira S. Generalized logistic functions in modelling emergence of Brassica napus L. PLoS ONE. 2018;13:e0201980. doi: 10.1371/journal.pone.0201980. PubMed DOI PMC
Koo AJ. Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 2018;17:51–80. doi: 10.1007/s11101-017-9510-8. DOI
Trevisan S, Manoli A, Ravazzolo L, Franceschi C, Quaggiotti S. mRNA-sequencing analysis reveals transcriptional changes in root of maize seedlings treated with two increasing concentrations of a new biostimulant. J. Agric. Food Chem. 2017;65:9956–9969. doi: 10.1021/acs.jafc.7b03069. PubMed DOI
Szparaga A, et al. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 2018;9:1401. doi: 10.3389/fpls.2018.01401. PubMed DOI PMC
Cocetta, G. & Ferrante, A. Nutritional and Nutraceutical Value of Vegetable Crops as Affected by Biostimulants Application. In: eLS. (Wiley, Chichester, 2020). 10.1002/9780470015902.a0028906.
Kocira S. Effect of applying a biostimulant containing seaweed and amino acids on the content of fiber fractions in three soybean cultivars. Legume Res. 2019;42:341–347. doi: 10.18805/LR-412. DOI
Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. https://eur-lex.europa.eu/eli/reg/2019/1009/oj (2019).
Chehade A, Chami A, Angelica S, Pascali D, Paolo F. Biostimulants from food processing by-products: Agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.) J. Sci. Food Agric. 2018;98:1426–1436. doi: 10.1002/jsfa.8610. PubMed DOI
Stirk WA, Tarkowská D, Turečová V, Strnad M, van Staden J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 2014;26:561–567. doi: 10.1007/s10811-013-0062-z. DOI
Szczepanek M, Siwik-Ziomek A, Wilczewski E. Effect of biostimulant on accumulation of Mg in winter oilseed rape under different mineral fertilization rates. J. Elementol. 2017;22:1375–1385. doi: 10.5601/jelem.2017.22.1.1317. DOI
Kocira S, et al. Effect of an amino acids-containing biostimulator on common bean crop. Przem. Chem. 2015;94(10):1732–1736. doi: 10.15199/62.2015.10.16. DOI
Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014;383:3–41. doi: 10.1007/s11104-014-2131-8. DOI
Colla G, et al. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015;196:28–38. doi: 10.1016/j.scienta.2015.08.037. DOI
Sharma HSS, Fleming C, Selby C, Rao JR, Martin T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014;26:465–490. doi: 10.1007/s10811-013-0101-9. DOI
Ertani A, Pizzeghello D, Francioso O, Tinti A, Nardi S. Biological activity of vegetal extracts containing phenols on plant metabolism. Molecules. 2016;21:205–219. doi: 10.3390/molecules21020205. PubMed DOI PMC
Michałek W, Kocira A, Findura P, Szparaga A, Kocira S. The influence of biostimulant Asahi SL on the photosynthetic activity of selected cultivars of Phaseolus vulgaris L. Rocz. Ochr. Sr. 2018;20:1286–1301.
Hara P, Szparaga A, Czerwińska E. Ecological methods used to control fungi that cause diseases of the crop plant. Rocz. Ochr. Sr. 2018;20:1764–1775.
Mejía-Teniente L, et al. Use of elicitors as an approach for sustainable agriculture. Afr. J. Biotechnol. 2010;9:9155–9162.
Chandler D, et al. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B. 2011;366:1987–1998. doi: 10.1098/rstb.2010.0390. PubMed DOI PMC
Wezel A, et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014;34:1–20. doi: 10.1007/s13593-013-0180-7. DOI
Brown P, Saa S. Biostimulants in agriculture. Front. Plant Sci. 2015;6:671. doi: 10.3389/fpls.2015.00671. PubMed DOI PMC
Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Technol. Agric. 2017;4:5. doi: 10.1186/s40538-017-0089-5. DOI
Grabowska A, Kunicki E, Sekara A, Kalisz A, Wojciechowska R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 2012;77:37–48. doi: 10.2478/v10032-012-0014-1. DOI
Kolomaznik K, Pecha J, Friebrova V, Janacova D, Vasek V. Diffusion of biostimulators into plant tissues. Heat Mass Transf. 2012;48:1505–1512. doi: 10.1007/s00231-012-0998-6. DOI
Gozzo F, Faoro F. Systemic acquired resistance (50 years after discovery): Moving from the lab to the field. J. Agric. Food Chem. 2013;61:12473–12491. doi: 10.1021/jf404156x. PubMed DOI
Bashan Y, de Bashan LE, Prabhu SR, Hernandez J-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013) Plant Soil. 2014;378(1–2):1–33. doi: 10.1007/s11104-013-1956-x. DOI
Cox, M. & Wong, B. Biological crop chemistry primer: Green shoots through green products, Piper Jaffray industry note. Web site 2013 [cited 4 May 2020]. https://files.ctctcdn.com/f569d87b001/8445a3b3-dcf8-4654-8d3b-bd079e55022d.pdf.
Arora, N. K., Khare, E. & Maheshwari, D. K. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In Plant Growth and Health Promoting Bacteria (ed Maheshwari, D.K.) 97–116 (Springer, Dordrecht, 2010). 10.1007/978-3-642-13612-2_5.
Walters DR, Ratsep J, Havis ND. Controlling crop diseases using induced resistance: Challenges for the future. J. Exp. Bot. 2013;64(5):1263–1280. doi: 10.1093/jxb/ert026. PubMed DOI
Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control. 2011;59(2):294–303. doi: 10.1016/j.biocontrol.2011.06.017. DOI
Łączyński, A. et al. Wyniki produkcji roślinnej w 2017 r. (Główny Urząd Statystyczny Warszawa, 2018).
Szparaga A, et al. Towards sustainable agriculture—agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability. 2019;11:4575. doi: 10.3390/su11174575. DOI
Kocira S, et al. Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res. 2018;41:589–593.
Kocira A, Świeca M, Kocira S, Złotek U, Jakubczyk A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima) Saudi J. Biol. Sci. 2018;25:563–571. doi: 10.1016/j.sjbs.2016.01.039. PubMed DOI PMC
Kocira S. Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chil. J. Agric. Res. 2019;79:17–25. doi: 10.4067/S0718-58392019000100017. DOI
Kocira A, et al. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.) Agronomy. 2020;10:189. doi: 10.3390/agronomy10020189. DOI
Rouphael Y, Cardarelli M, Bonini P, Colla G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017;8:131. doi: 10.3389/fpls.2017.00131. PubMed DOI PMC
Shahabivand S, Padash A, Aghaee A, Nasiri Y, Rezaei PF. Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran. J. Plant Physiol. 2018;8:2333–2344. doi: 10.22034/ijpp.2018.539109. DOI
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 2011;124:509–525. doi: 10.1007/s10265-011-0412-3. PubMed DOI
Xiong H, et al. Overexpression of OsMYB48–1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE. 2014;9:e92913. doi: 10.1371/journal.pone0092913. PubMed DOI PMC
Trivellini A, et al. Survive or die? A molecular insight into salt-dependant signaling network. Environ. Exp. Bot. 2016;132:140–153. doi: 10.1016/j.envexpbot.2016.07.007. DOI
Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1997;21:79–102. doi: 10.1023/A:1005703923347. DOI
Mattioli R, Costantino P, Trovato M. Proline accumulation in plants. Plant Signal. Behav. 2009;4:1016–1018. doi: 10.4161/psb.4.11.9797. PubMed DOI PMC
Cheynier V, Comte G, Davies KM, Lattanzio V. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013;72:1–20. doi: 10.1016/j.plaphy.2013.05.009. PubMed DOI
Bulgari R, Trivellini A, Ferrante A. Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Front. Plant Sci. 2019;9:1870. doi: 10.3389/fpls.2018.01870. PubMed DOI PMC
Rouphael Y, et al. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phychol. 2017;29:459–470. doi: 10.1007/s10811-016-0937-x. DOI
Vanacker H, Carver TLW, Foyer CH. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol. 1998;117:1103–1114. doi: 10.1104/pp.117.3.1103. PubMed DOI PMC
Lawlor DW, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009;103:561–579. doi: 10.1093/aob/mcn244. PubMed DOI PMC
Ertani A, Schiavon M, Altissimo A, Franceschi A, Nardi S. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil Sci. 2011;174:496–503. doi: 10.1002/jpln.201000075. DOI
Bettoni MM, et al. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Comp. Anal. 2016;51:37–44. doi: 10.1016/j.jfca.2016.06.008. DOI
Ertani A, Schiavon M, Muscolo A, Nardi S. Alfalfa plant-derived biostimulant stimulates short-term growth of salt stressed Zea mays L. plants. Plant Soil. 2013;364:145–158. doi: 10.1007/s11104-012-1335-z. DOI
Ertani A, et al. The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chem. Biol. Technol. Agric. 2015;2:11. doi: 10.1186/s40538-015-0039-z. DOI
Oboh G, Ademosun AO. Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J. Food Sci. Technol. 2012;49:729–736. doi: 10.1007/s13197-010-0222-y. PubMed DOI PMC
Serrano M, et al. Antioxidant and nutritive constituents during sweet pepper development and ripening are enhanced by nitrophenolate treatments. Food Chem. 2010;118:497–503. doi: 10.1016/j.foodchem.2009.05.006. DOI
Krasensky, J., Carmody, M., Sierla, M. & Kangasjärvi, J. Ozone and reactive oxygen species. Wiley Online Library Web side. 2017 March 20 [cited 4 May 2020]. 10.1002/9780470015902.a0001299.pub3.
Ciarmiello LF, Woodrow P, Fuggi A, Pontecorvo G, Carillo P. Plant genes for abiotic stress. In: Shanker A, Venkateswarlu B, editors. Abiotic Stress in Plants—Mechanisms and Adaptations. Croatia: InTech; 2011. pp. 283–308.
Woziak E, Blaszczak A, Wiatrak P, Canady M. Biostimulant mode of action: Impact of biostimulant on whole-plant. In: Geelen D, Xu L, editors. The Chemical Biology of Plant Biostimulants. Hoboken: Wiley; 2020. pp. 207–227.
Woziak, E., Blaszczak A., Wiatrak, P. & Canady M. Biostimulant mode of action: Impact of biostimulant on cellular level. In The Chemical Biology of Plant Biostimulants (eds. Geelen, D. & Xu, L.) 229–243 (Wiley, Hoboken, 2020).
Upadhyay S, Dixit M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev. 2015 doi: 10.1155/2015/504253. PubMed DOI PMC
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 2002;192:1–15. doi: 10.1002/jcp.10119. PubMed DOI
Los FGB, Zielinski AAF, Wojeicchowski JP, Nogueira A, Demiate IM. Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Curr. Opin. Food Sci. 2018;19:63–71. doi: 10.1016/j.cofs.2018.01.010. DOI
Abbas SM. The influence of biostimulants on the growth and on the biochemical composition of viciafaba CV. Giza 3 beans. Rom. Biotechnol. Lett. 2013;18:8061–8068.
Aloni R, Langhans M, Aloni E, Ullrich CI. Role of cytokinin in the regulation of root gravitropism. Planta. 2004;220:177–182. doi: 10.1007/s00425-004-1381-8. PubMed DOI
Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 2006;97:883–893. doi: 10.1093/aob/mcl027. PubMed DOI PMC
Aloni R, Tollier MT, Monties B. The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus-blumei stems. Plant Physiol. 1990;94:1743–1747. doi: 10.1104/pp.94.4.1743. PubMed DOI PMC
Mauriat M, Moritz T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J. 2009;58:989–1003. doi: 10.1111/j.1365-313X.2009.03836.x. PubMed DOI
Dayan J, Schwarzkopf M, Avni A, Aloni R. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol. J. 2010;8:425–435. doi: 10.1111/j.1467-7652.2009.00480.x. PubMed DOI
Dombrowski JE, Martin RC. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci. 2009;176:390–396. doi: 10.1016/j.plantsci.2008.12.005. DOI
Gómez-Merino, F. C. & Trejo-Téllez, L. I. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In Biotic and Abiotic Stress Tolerance in Plants (ed Vats, S) 137–172 (Springer, Singapore, 2018). 10.1007/978-981-10-9029-5_6.
Nemes, N. Comparatice analysis of organic and non-organic farming systems: A critical assessment of farm profitability. FAO Web side. [cited 4 May 2020]. https://www.fao.org/tempref/docrep/fao/011/ak355e/ak355e00.pdf (2017).
Mariano RA. Profitability analysis of irradiated carrageenan as a biostimulant in small-scale rice farming in selected provinces in the Philippines. J. Glob. Bus. Trade. 2018;14:15–30. doi: 10.20294/jgbt.2018.14.2.15. DOI
Abad LV, Aranilla CT, Relleve LS, Dela Rosa AM. Emerging applications of radiation-modified carrageenans. Nucl. Instrum. Methods B. 2014;336:167–172. doi: 10.1016/j.nimb.2014.07.005. DOI
Khan W, et al. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009;28:386–399. doi: 10.1007/s00344-009-9103-x. DOI
Jesus AA, Lima SF, Vendruscolo EP, Alvarez RCF, Contardi LM. Agroeconomic analysis of sweet corn grown with biostimulant applied on seed. Rev. Fac. Agron. 2016;115:119–127.
Zhang X, Schmidt RE. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 2000;40:1344–1249. doi: 10.2135/cropsci2000.4051344x. DOI
Crepaldi SA. Contabilidade Rural: Uma Abordagem Decisorial. 2. Atlas: São Paulo; 1998.
Kocira S, Szparaga A, Kuboń M, Czerwińska E, Piskier T. Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy. 2019;9:93. doi: 10.3390/agronomy9020093. DOI
Świeca M, Gawlik-Dziki U, Kowalczyk D, Złotek U. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 2012;140:87–95. doi: 10.1016/j.scienta.2012.04.005. DOI
Singleton V, Rossi J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.
Lamaison JLC, Carnet A. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta Helv. 1990;65:315–320. doi: 10.1016/j.nfs.2018.10.001. DOI
Fuleki T, Francis FJ. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 1968;33:72–77. doi: 10.1111/j.1365-2621.1968.tb00887.x. DOI
Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000;48:3396–3402. doi: 10.1021/jf9913458. PubMed DOI
Jimenez-Alvarez D, et al. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J. Agric. Food Chem. 2008;56(10):3470–3477. doi: 10.1021/jf703723ss. PubMed DOI
Sancho RAS, Pavan V, Pastore GM. Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Res. Int. 2015;76:74–78. doi: 10.1016/j.foodres.2014.11.042. DOI
Carillo, P. & Gibon, Y. Protocol: extraction and determination of proline. [cited 4 January 2020]. https://prometheuswiki.publish.csiro.au/tiki.
Redmile-Gordon MA, Armenise E, White RP, Hirsch PR, Goulding KWT. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol. Biochem. 2013;67:166–173. doi: 10.1016/j.soilbio.2013.08.017. PubMed DOI PMC
Goñi I, Garcia-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997;17(3):427–437. doi: 10.1016/S0271-5317(97)00010-9. DOI
AOCS Approved Procedure Ba 6a-05. [cited 2 September 2020]. https://www.ssco.com.tw/Ankom/PDF_file/Crude%20Fiber%20Method%20A200.pdf.
Szparaga, A. Wybrane Właściwości Fizyczne, Mechaniczne, Chemiczne i Plon Nasion Fasoli Zwykłej (Phaseolus Vulgaris L.) w Zależności od Metody Aplikacji Biostymulatorów. (Polskie Towarzystwo Inżynierii Rolniczej, 2019).
Szparaga A, Tabor S, Kocira S, Czerwińska E, Kuboń M, Płóciennik B, Findura P. Survivability of probiotic bacteria in model systems of non-fermented and fermented coconut and hemp milks. Sustainability. 2019;11:6093. doi: 10.3390/su11216093. DOI