Vagal Threshold Determination during Incremental Stepwise Exercise in Normoxia and Normobaric Hypoxia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33086469
PubMed Central
PMC7590016
DOI
10.3390/ijerph17207579
PII: ijerph17207579
Knihovny.cz E-zdroje
- Klíčová slova
- autonomic nervous system, exercise intensity, saturation, simulated altitude, vagal withdrawal,
- MeSH
- cvičení * fyziologie MeSH
- dospělí MeSH
- hypoxie MeSH
- lidé MeSH
- mladý dospělý MeSH
- nadmořská výška MeSH
- spotřeba kyslíku * MeSH
- zátěžový test MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study focuses on the determination of the vagal threshold (Tva) during exercise with increasing intensity in normoxia and normobaric hypoxia. The experimental protocol was performed by 28 healthy men aged 20 to 30 years. It included three stages of exercise on a bicycle ergometer with a fraction of inspired oxygen (FiO2) 20.9% (normoxia), 17.3% (simulated altitude ~1500 m), and 15.3% (~2500 m) at intensity associated with 20% to 70% of the maximal heart rate reserve (MHRR) set in normoxia. Tva level in normoxia was determined at exercise intensity corresponding with (M ± SD) 45.0 ± 5.6% of MHRR. Power output at Tva (POth), representing threshold exercise intensity, decreased with increasing degree of hypoxia (normoxia: 114 ± 29 W; FiO2 = 17.3%: 110 ± 27 W; FiO2 = 15.3%: 96 ± 32 W). Significant changes in POth were observed with FiO2 = 15.3% compared to normoxia (p = 0.007) and FiO2 = 17.3% (p = 0.001). Consequentially, normoxic %MHRR adjusted for hypoxia with FiO2 = 15.3% was reduced to 39.9 ± 5.5%. Considering the convenient altitude for exercise in hypoxia, POth did not differ excessively between normoxic conditions and the simulated altitude of ~1500 m, while more substantial decline of POth occurred at the simulated altitude of ~2500 m compared to the other two conditions.
Zobrazit více v PubMed
Shaffer F., McCraty R., Zerr C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Physiol. 2014;5:1040. doi: 10.3389/fpsyg.2014.01040. PubMed DOI PMC
Acharya U.R., Joseph K.P., Kannathal N., Lim C.M., Suri J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006;44:1031–1051. doi: 10.1007/s11517-006-0119-0. PubMed DOI
Aubert A.E., Seps B., Beckers F. Heart rate variability in athletes. Sports Med. 2003;33:889–919. doi: 10.2165/00007256-200333120-00003. PubMed DOI
Yasuma F., Hayano J. Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683–690. doi: 10.1378/chest.125.2.683. PubMed DOI
Michael S., Graham K.S., Davis G.M. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—A review. Front. Physiol. 2017;8:301. doi: 10.3389/fphys.2017.00301. PubMed DOI PMC
Åstrand P.O., Rodahl K., Dahl H.A., Strømme S.B. Textbook of Work Physiology: Physiological Bases of Exercise. Human Kinetics; Champaign, IL, USA: 2003.
Perini R., Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur. J. Appl. Physiol. 2003;90:317–325. doi: 10.1007/s00421-003-0953-9. PubMed DOI
Chrousos G.P., Gold P.W. The concepts of stress and stress system disorders. JAMA. 1992;267:1244–1252. doi: 10.1001/jama.1992.03480090092034. PubMed DOI
Shibata M., Moritani T., Miyawaki T., Hayashi T., Nakao K. Exercise prescription based upon cardiac vagal activity for middle-aged obese women. Int. J. Obes. 2002;26:1356–1362. doi: 10.1038/sj.ijo.0802131. PubMed DOI
Tulppo M.P., Mäkikallio T.H., Seppänen T., Laukkanen R.T., Huikuri H.V. Vagal modulation of heart rate during exercise: Effects of age and physical fitness. Am. J. Physiol. 1998;274:H424–H429. doi: 10.1152/ajpheart.1998.274.2.H424. PubMed DOI
Vanoli E., Schwartz P.J. Sympathetic-parasympathetic interaction and sudden death. Basic Res. Cardiol. 1990;85(Suppl. 1):305–321. doi: 10.1007/978-3-662-11038-6_25. PubMed DOI
Buch A.N., Coote J.H., Townend J.N. Mortality, cardiac vagal control and physical training—What’s the link? Exp. Physiol. 2002;87:423–435. doi: 10.1111/j.1469-445X.2002.tb00055.x. PubMed DOI
Corrado D., Migliore F., Basso C., Thiene G. Exercise and the risk of sudden cardiac death. Herz. 2006;31:553–558. doi: 10.1007/s00059-006-2885-8. PubMed DOI
Oshima Y., Shiga T., Moritani T., Masuda I., Hayashi T., Nakao K. Determination of optimal exercise intensity based on real-time analysis of heart rate variability during exercise. Jpn. J. Phys. Fit. Sports Med. 2003;52:295–304. doi: 10.7600/jspfsm1949.52.295. DOI
Millet G.P., Roels B., Schmitt L., Woorons X., Richalet J.-P. Combining hypoxic methods for peak performance. Sports Med. 2010;40:1–25. doi: 10.2165/11317920-000000000-00000. PubMed DOI
Favret F., Richalet J.-P. Exercise and hypoxia: The role of the autonomic nervous system. Respir. Physiol. Neurobiol. 2007;158:280–286. doi: 10.1016/j.resp.2007.04.001. PubMed DOI
West J.B., Schoene R.B., Luks A.M., Milledge J.S. High Altitude Medicine and Physiology. 5th ed. Taylor & Francis; Boca Raton, FL, USA: 2013. DOI
Saito S., Tanobe K., Yamada M., Nishihara F. Relationship between arterial oxygen saturation and heart rate variability at high altitudes. Am. J. Emerg. Med. 2005;23:8–12. doi: 10.1016/j.ajem.2004.09.023. PubMed DOI
Oliveira A.L.M.B., de Azeredo Rohan P., Gonçalves T.R., da Silva Soares P.P. Effects of hypoxia on heart rate variability in healthy individuals: A systematic review. Int. J. Cardiovasc. Sci. 2017;30:251–261. doi: 10.5935/2359-4802.20170035. DOI
Lizamore C.A., Hamlin M.J. The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: A literature review. High Alt. Med. Biol. 2017;18:305–321. doi: 10.1089/ham.2017.0050. PubMed DOI
Burtscher M., Ponchia A. The risk of cardiovascular events during leisure time activities at altitude. Prog. Cardiovasc. Dis. 2010;52:507–511. doi: 10.1016/j.pcad.2010.02.008. PubMed DOI
Rimoldi S.F., Sartori C., Seiler C., Delacrétaz E., Mattle H.P., Scherrer U., Allemann Y. High-altitude exposure in patients with cardiovascular disease: Risk assessment and practical recommendations. Prog. Cardiovasc. Dis. 2010;52:512–524. doi: 10.1016/j.pcad.2010.03.005. PubMed DOI
Bobyleva O.V., Glazachev O.S. Changes in autonomic response and resistance to acute graded hypoxia during intermittent hypoxic training. Hum. Physiol. 2007;33:199–206. doi: 10.1134/S0362119707020107. PubMed DOI
Bille K., Figueiras D., Schamasch P., Kappenberger L., Brenner J.I., Meijboom F.J., Meijboom E.J. Sudden cardiac death in athletes: The Lausanne Recommendations. Eur. J. Cardiovasc. Prev. Rehabil. 2006;13:859–875. doi: 10.1097/01.hjr.0000238397.50341.4a. PubMed DOI
Karvonen M.J., Kentala E., Mustala O. The effects of training on heart rate: A longitudinal study. Ann. Med. Exp. Biol. Fenn. 1957;35:307–315. PubMed
McNulty C.R., Robergs R.A. New methods for processing and quantifying VO2 kinetics to steady state: VO2 onset kinetics. Front. Physiol. 2017;8:740. doi: 10.3389/fphys.2017.00740. PubMed DOI PMC
Caminal P., Sola F., Gomis P., Guasch E., Perera A., Soriano N., Mont L. Validity of the Polar V800 monitor for measuring heart rate variability in mountain running route conditions. Eur. J. Appl. Physiol. 2018;118:669–677. doi: 10.1007/s00421-018-3808-0. PubMed DOI
Lippman N., Stein K.M., Lerman B.B. Comparison of methods for removal of ectopy in measurement of heart rate variability. Pt 2Am. J. Physiol. 1994;267:H411–H418. doi: 10.1152/ajpheart.1994.267.1.H411. PubMed DOI
Borg G. Borg’s Perceived Exertion and Pan Scales. Human Kinetics; Champaign, IL, USA: 1998.
Botek M., Stejskal P., Krejci J., Jakubec A., Gaba A. Vagal threshold determination: Effect of age and gender. Int. J. Sports Med. 2010;31:768–772. doi: 10.1055/s-0030-1263141. PubMed DOI
Hautala A.J., Mäkikallio T.H., Seppänen T., Huikuri H.V., Tulppo M.P. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin. Physiol. Funct. Imaging. 2003;23:215–223. doi: 10.1046/j.1475-097X.2003.00499.x. PubMed DOI
Iwasaki K., Ogawa Y., Aoki K., Saitoh T., Otsubo A., Shibata S. Cardiovascular regulation response to hypoxia during stepwise decreases from 21% to 15% inhaled oxygen. Aviat. Space Environ. Med. 2006;77:1015–1019. PubMed
Siebenmann C., Ryrsø C.K., Oberholzer L., Fisher J.P., Hilsted L.M., Rasmussen P., Secher N.H., Lundby C. Hypoxia-induced vagal withdrawal is independent of the hypoxic ventilatory response in men. J. Appl. Physiol. 2019;126:124–131. doi: 10.1152/japplphysiol.00701.2018. PubMed DOI
Marshall J.M. Chemoreceptors and cardiovascular control in acute and chronic systemic hypoxia. Braz. J. Med. Biol. Res. 1998;31:863–888. doi: 10.1590/S0100-879X1998000700002. PubMed DOI
Rojas-Camayo J., Mejia C.R., Callacondo D., A Dawson J., Posso M.C., Galvan C.A., Davila-Arango N., Bravo E.A., Loescher V.Y., Padilla-Deza M.M., et al. Reference values for oxygen saturation from sea level to the highest human habitation in the Andes in acclimatised persons. Thorax. 2018;73:776–778. doi: 10.1136/thoraxjnl-2017-210598. PubMed DOI
Woorons X., Mollard P., Pichon A., Lamberto C., Duvallet A., Richalet J.-P. Moderate exercise in hypoxia induces a greater arterial desaturation in trained than untrained men. Scand. J. Med. Sci. Sports. 2007;17:431–436. doi: 10.1111/j.1600-0838.2006.00577.x. PubMed DOI
Wilber R.L. Altitude Training and Athletic Performance. Human Kinetics; Champaign, IL, USA: 2004.
Van De Borne P., Montano N., Narkiewicz K., Degaute J.P., Malliani A., Pagani M., Somers V.K. Importance of ventilation in modulating interaction between sympathetic drive and cardiovascular variability. Am. J. Physiol. Heart Circ. Physiol. 2004;280:H722–H729. doi: 10.1152/ajpheart.2001.280.2.H722. PubMed DOI
Shiraishi Y., Katsumata Y., Sadahiro T., Azuma K., Akita K., Isobe S., Yashima F., Miyamoto K., Nishiyama T., Tamura Y., et al. Real-time analysis of the heart rate variability during incremental exercise for the detection of the ventilatory threshold. J. Am. Heart Assoc. 2018;7:e006612. doi: 10.1161/JAHA.117.006612. PubMed DOI PMC