Vagal Threshold Determination during Incremental Stepwise Exercise in Normoxia and Normobaric Hypoxia

. 2020 Oct 19 ; 17 (20) : . [epub] 20201019

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33086469

This study focuses on the determination of the vagal threshold (Tva) during exercise with increasing intensity in normoxia and normobaric hypoxia. The experimental protocol was performed by 28 healthy men aged 20 to 30 years. It included three stages of exercise on a bicycle ergometer with a fraction of inspired oxygen (FiO2) 20.9% (normoxia), 17.3% (simulated altitude ~1500 m), and 15.3% (~2500 m) at intensity associated with 20% to 70% of the maximal heart rate reserve (MHRR) set in normoxia. Tva level in normoxia was determined at exercise intensity corresponding with (M ± SD) 45.0 ± 5.6% of MHRR. Power output at Tva (POth), representing threshold exercise intensity, decreased with increasing degree of hypoxia (normoxia: 114 ± 29 W; FiO2 = 17.3%: 110 ± 27 W; FiO2 = 15.3%: 96 ± 32 W). Significant changes in POth were observed with FiO2 = 15.3% compared to normoxia (p = 0.007) and FiO2 = 17.3% (p = 0.001). Consequentially, normoxic %MHRR adjusted for hypoxia with FiO2 = 15.3% was reduced to 39.9 ± 5.5%. Considering the convenient altitude for exercise in hypoxia, POth did not differ excessively between normoxic conditions and the simulated altitude of ~1500 m, while more substantial decline of POth occurred at the simulated altitude of ~2500 m compared to the other two conditions.

Zobrazit více v PubMed

Shaffer F., McCraty R., Zerr C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Physiol. 2014;5:1040. doi: 10.3389/fpsyg.2014.01040. PubMed DOI PMC

Acharya U.R., Joseph K.P., Kannathal N., Lim C.M., Suri J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006;44:1031–1051. doi: 10.1007/s11517-006-0119-0. PubMed DOI

Aubert A.E., Seps B., Beckers F. Heart rate variability in athletes. Sports Med. 2003;33:889–919. doi: 10.2165/00007256-200333120-00003. PubMed DOI

Yasuma F., Hayano J. Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683–690. doi: 10.1378/chest.125.2.683. PubMed DOI

Michael S., Graham K.S., Davis G.M. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—A review. Front. Physiol. 2017;8:301. doi: 10.3389/fphys.2017.00301. PubMed DOI PMC

Åstrand P.O., Rodahl K., Dahl H.A., Strømme S.B. Textbook of Work Physiology: Physiological Bases of Exercise. Human Kinetics; Champaign, IL, USA: 2003.

Perini R., Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur. J. Appl. Physiol. 2003;90:317–325. doi: 10.1007/s00421-003-0953-9. PubMed DOI

Chrousos G.P., Gold P.W. The concepts of stress and stress system disorders. JAMA. 1992;267:1244–1252. doi: 10.1001/jama.1992.03480090092034. PubMed DOI

Shibata M., Moritani T., Miyawaki T., Hayashi T., Nakao K. Exercise prescription based upon cardiac vagal activity for middle-aged obese women. Int. J. Obes. 2002;26:1356–1362. doi: 10.1038/sj.ijo.0802131. PubMed DOI

Tulppo M.P., Mäkikallio T.H., Seppänen T., Laukkanen R.T., Huikuri H.V. Vagal modulation of heart rate during exercise: Effects of age and physical fitness. Am. J. Physiol. 1998;274:H424–H429. doi: 10.1152/ajpheart.1998.274.2.H424. PubMed DOI

Vanoli E., Schwartz P.J. Sympathetic-parasympathetic interaction and sudden death. Basic Res. Cardiol. 1990;85(Suppl. 1):305–321. doi: 10.1007/978-3-662-11038-6_25. PubMed DOI

Buch A.N., Coote J.H., Townend J.N. Mortality, cardiac vagal control and physical training—What’s the link? Exp. Physiol. 2002;87:423–435. doi: 10.1111/j.1469-445X.2002.tb00055.x. PubMed DOI

Corrado D., Migliore F., Basso C., Thiene G. Exercise and the risk of sudden cardiac death. Herz. 2006;31:553–558. doi: 10.1007/s00059-006-2885-8. PubMed DOI

Oshima Y., Shiga T., Moritani T., Masuda I., Hayashi T., Nakao K. Determination of optimal exercise intensity based on real-time analysis of heart rate variability during exercise. Jpn. J. Phys. Fit. Sports Med. 2003;52:295–304. doi: 10.7600/jspfsm1949.52.295. DOI

Millet G.P., Roels B., Schmitt L., Woorons X., Richalet J.-P. Combining hypoxic methods for peak performance. Sports Med. 2010;40:1–25. doi: 10.2165/11317920-000000000-00000. PubMed DOI

Favret F., Richalet J.-P. Exercise and hypoxia: The role of the autonomic nervous system. Respir. Physiol. Neurobiol. 2007;158:280–286. doi: 10.1016/j.resp.2007.04.001. PubMed DOI

West J.B., Schoene R.B., Luks A.M., Milledge J.S. High Altitude Medicine and Physiology. 5th ed. Taylor & Francis; Boca Raton, FL, USA: 2013. DOI

Saito S., Tanobe K., Yamada M., Nishihara F. Relationship between arterial oxygen saturation and heart rate variability at high altitudes. Am. J. Emerg. Med. 2005;23:8–12. doi: 10.1016/j.ajem.2004.09.023. PubMed DOI

Oliveira A.L.M.B., de Azeredo Rohan P., Gonçalves T.R., da Silva Soares P.P. Effects of hypoxia on heart rate variability in healthy individuals: A systematic review. Int. J. Cardiovasc. Sci. 2017;30:251–261. doi: 10.5935/2359-4802.20170035. DOI

Lizamore C.A., Hamlin M.J. The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: A literature review. High Alt. Med. Biol. 2017;18:305–321. doi: 10.1089/ham.2017.0050. PubMed DOI

Burtscher M., Ponchia A. The risk of cardiovascular events during leisure time activities at altitude. Prog. Cardiovasc. Dis. 2010;52:507–511. doi: 10.1016/j.pcad.2010.02.008. PubMed DOI

Rimoldi S.F., Sartori C., Seiler C., Delacrétaz E., Mattle H.P., Scherrer U., Allemann Y. High-altitude exposure in patients with cardiovascular disease: Risk assessment and practical recommendations. Prog. Cardiovasc. Dis. 2010;52:512–524. doi: 10.1016/j.pcad.2010.03.005. PubMed DOI

Bobyleva O.V., Glazachev O.S. Changes in autonomic response and resistance to acute graded hypoxia during intermittent hypoxic training. Hum. Physiol. 2007;33:199–206. doi: 10.1134/S0362119707020107. PubMed DOI

Bille K., Figueiras D., Schamasch P., Kappenberger L., Brenner J.I., Meijboom F.J., Meijboom E.J. Sudden cardiac death in athletes: The Lausanne Recommendations. Eur. J. Cardiovasc. Prev. Rehabil. 2006;13:859–875. doi: 10.1097/01.hjr.0000238397.50341.4a. PubMed DOI

Karvonen M.J., Kentala E., Mustala O. The effects of training on heart rate: A longitudinal study. Ann. Med. Exp. Biol. Fenn. 1957;35:307–315. PubMed

McNulty C.R., Robergs R.A. New methods for processing and quantifying VO2 kinetics to steady state: VO2 onset kinetics. Front. Physiol. 2017;8:740. doi: 10.3389/fphys.2017.00740. PubMed DOI PMC

Caminal P., Sola F., Gomis P., Guasch E., Perera A., Soriano N., Mont L. Validity of the Polar V800 monitor for measuring heart rate variability in mountain running route conditions. Eur. J. Appl. Physiol. 2018;118:669–677. doi: 10.1007/s00421-018-3808-0. PubMed DOI

Lippman N., Stein K.M., Lerman B.B. Comparison of methods for removal of ectopy in measurement of heart rate variability. Pt 2Am. J. Physiol. 1994;267:H411–H418. doi: 10.1152/ajpheart.1994.267.1.H411. PubMed DOI

Borg G. Borg’s Perceived Exertion and Pan Scales. Human Kinetics; Champaign, IL, USA: 1998.

Botek M., Stejskal P., Krejci J., Jakubec A., Gaba A. Vagal threshold determination: Effect of age and gender. Int. J. Sports Med. 2010;31:768–772. doi: 10.1055/s-0030-1263141. PubMed DOI

Hautala A.J., Mäkikallio T.H., Seppänen T., Huikuri H.V., Tulppo M.P. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin. Physiol. Funct. Imaging. 2003;23:215–223. doi: 10.1046/j.1475-097X.2003.00499.x. PubMed DOI

Iwasaki K., Ogawa Y., Aoki K., Saitoh T., Otsubo A., Shibata S. Cardiovascular regulation response to hypoxia during stepwise decreases from 21% to 15% inhaled oxygen. Aviat. Space Environ. Med. 2006;77:1015–1019. PubMed

Siebenmann C., Ryrsø C.K., Oberholzer L., Fisher J.P., Hilsted L.M., Rasmussen P., Secher N.H., Lundby C. Hypoxia-induced vagal withdrawal is independent of the hypoxic ventilatory response in men. J. Appl. Physiol. 2019;126:124–131. doi: 10.1152/japplphysiol.00701.2018. PubMed DOI

Marshall J.M. Chemoreceptors and cardiovascular control in acute and chronic systemic hypoxia. Braz. J. Med. Biol. Res. 1998;31:863–888. doi: 10.1590/S0100-879X1998000700002. PubMed DOI

Rojas-Camayo J., Mejia C.R., Callacondo D., A Dawson J., Posso M.C., Galvan C.A., Davila-Arango N., Bravo E.A., Loescher V.Y., Padilla-Deza M.M., et al. Reference values for oxygen saturation from sea level to the highest human habitation in the Andes in acclimatised persons. Thorax. 2018;73:776–778. doi: 10.1136/thoraxjnl-2017-210598. PubMed DOI

Woorons X., Mollard P., Pichon A., Lamberto C., Duvallet A., Richalet J.-P. Moderate exercise in hypoxia induces a greater arterial desaturation in trained than untrained men. Scand. J. Med. Sci. Sports. 2007;17:431–436. doi: 10.1111/j.1600-0838.2006.00577.x. PubMed DOI

Wilber R.L. Altitude Training and Athletic Performance. Human Kinetics; Champaign, IL, USA: 2004.

Van De Borne P., Montano N., Narkiewicz K., Degaute J.P., Malliani A., Pagani M., Somers V.K. Importance of ventilation in modulating interaction between sympathetic drive and cardiovascular variability. Am. J. Physiol. Heart Circ. Physiol. 2004;280:H722–H729. doi: 10.1152/ajpheart.2001.280.2.H722. PubMed DOI

Shiraishi Y., Katsumata Y., Sadahiro T., Azuma K., Akita K., Isobe S., Yashima F., Miyamoto K., Nishiyama T., Tamura Y., et al. Real-time analysis of the heart rate variability during incremental exercise for the detection of the ventilatory threshold. J. Am. Heart Assoc. 2018;7:e006612. doi: 10.1161/JAHA.117.006612. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...