Are Multicentre Bond Indices and Related Quantities Reliable Predictors of Excited-State Aromaticity?

. 2020 Oct 19 ; 25 (20) : . [epub] 20201019

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33086580

Systematic scrutiny is carried out of the ability of multicentre bond indices and the NOEL-based similarity index dAB to serve as excited-state aromaticity criteria. These indices were calculated using state-optimized complete active-space self-consistent field wavefunctions for several low-lying singlet and triplet states of the paradigmatic molecules of benzene and square cyclobutadiene and the inorganic ring S2N2. The comparison of the excited-state indices with aromaticity trends for individual excited states suggested by the values of magnetic aromaticity criteria show that whereas the indices work well for aromaticity reversals between the ground singlet and first triplet electronic states, addressed by Baird's rule, there are no straightforward parallels between the two sets of data for singlet excited states. The problems experienced while applying multicentre bond indices and dAB to singlet excited states are explained by the loss of the information inherently present in wavefunctions and/or pair densities when calculating the first-order density matrix.

Zobrazit více v PubMed

Hückel E. Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzol und verwandter Verbindungen. Z. Phys. 1931;70:104–186. doi: 10.1007/BF01339530. DOI

Hückel E. Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. Z. Phys. 1932;76:628–648. doi: 10.1007/BF01341936. DOI

Streitwieser A. Molecular Orbital Theory for Organic Chemists. Wiley; New York, NY, USA: 1961. 239p

Schaad L.J., Hess B.A., Jr. Hückel molecular orbital π resonance energies. A new approach. J. Am. Chem. Soc. 1971;93:305–310.

Dewar M.J.S., Gleicher G.J. Ground states of conjugated molecules. II. Allowance for molecular geometry. J. Am. Chem. Soc. 1965;87:685–692. doi: 10.1021/ja01082a001. DOI

Baird N.C. Dewar resonance energy. J. Chem. Educ. 1971;48:509–513. doi: 10.1021/ed048p509. DOI

Schaad L.J., Hess B.A. Dewar resonance energy. Chem. Rev. 2001;101:1465–1486. doi: 10.1021/cr9903609. PubMed DOI

Aihara J. A new definition of Dewar-type resonance energies. J. Am. Chem. Soc. 1976;98:2750–2758. doi: 10.1021/ja00426a013. DOI

Gutman I., Milun M., Trinajstič N. Graph theory and molecular orbitals. 19. Nonparametric resonance energies for arbitrary conjugated hydrocarbons. J. Am. Chem. Soc. 1977;99:1692–1704. doi: 10.1021/ja00448a002. DOI

Kuwajima S. Valence bond theory of aromaticity. J. Am. Chem. Soc. 1984;106:6496–6502. doi: 10.1021/ja00334a007. DOI

Pauling L. The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys. 1936;4:673–677. doi: 10.1063/1.1749766. DOI

London F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium. 1937;8:397–409. doi: 10.1051/jphysrad:01937008010039700. DOI

Pople J.A. Proton magnetic resonance of hydrocarbons. J. Chem. Phys. 1956;24:1111. doi: 10.1063/1.1742701. DOI

Pople J.A., Untch K.G. Induced paramagnetic ring currents. J. Am. Chem. Soc. 1966;88:4811–4815. doi: 10.1021/ja00973a009. DOI

Jug K. A bond order approach to ring current and aromaticity. J. Org. Chem. 1983;48:1344–1348. doi: 10.1021/jo00156a038. DOI

Gomes J.A.N.F., Mallion R. Aromaticity and ring currents. Chem. Rev. 2001;101:1349–1384. doi: 10.1021/cr990323h. PubMed DOI

Fowler P.J., Steiner E., Havenith R.W.A., Jenneskens L.W. Current density, chemical shifts and aromaticity. Magn. Reson. Chem. 2004;42:S68–S78. doi: 10.1002/mrc.1445. PubMed DOI

Schleyer P.V.R., Maerker C., Dransfeld A., Jiao H., Van Eikema Hommes N.J.R. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1966;118:6317–6318. doi: 10.1021/ja960582d. PubMed DOI

Aihara J. Circuit Resonance Energy. A key quantity that links energetic and magnetic criteria of aromaticity. J. Am. Chem. Soc. 2006;128:2873–2879. doi: 10.1021/ja056430c. PubMed DOI

Evans M.G., Warhurst E. The activation energy of diene association reactions. Trans. Faraday Soc. 1938;34:614–625. doi: 10.1039/tf9383400614. DOI

Dewar M.J.S. Aromaticity and pericyclic reactions. Angew. Chem. Int. Ed. Engl. 1971;10:761–776. doi: 10.1002/anie.197107611. DOI

Van der Hart W.J., Mulder J.C.C., Oosterhof L.J. Extended valence bond theory, aromaticity and the Woodward-Hoffmann rules. J. Am. Chem. Soc. 1972;94:5724–5730. doi: 10.1021/ja00771a032. DOI

Aihara J. Aromaticity-based theory of pericyclic reactions. Bull. Chem. Soc. Jpn. 1978;51:1788–1792. doi: 10.1246/bcsj.51.1788. DOI

Kruszewski J., Krygowski T.M. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972;13:3839–3842. doi: 10.1016/S0040-4039(01)94175-9. DOI

Krygowski T.M., Cyrański M.K. Structural aspects of aromaticity. Chem. Rev. 2001;101:1385–1420. doi: 10.1021/cr990326u. PubMed DOI

Kleinpeter E., Koch A. Antiaromaticity proved by anisotropic effect in 1H NMR spectra. J. Phys. Chem. A. 2012;16:5674–5680. doi: 10.1021/jp300860q. PubMed DOI

Karadakov P.B., Horner K.E. Magnetic shielding in and around benzene and cyclobutadiene: A source of information about aromaticity, antiaromaticity and chemical bonding. J. Phys. Chem. A. 2013;117:518–523. doi: 10.1021/jp311536c. PubMed DOI

Giambiagi M., De Giambiagi M.S., Dos Santos Silva C.D., De Fuguereido A.P. Multicenter bond indices as a measure of aromaticity. Phys. Chem. Chem. Phys. 2000;2:3381–3392. doi: 10.1039/b002009p. DOI

Bultinck P., Ponec R., Van Damme S. Multicenter bond indices as a new measure of aromaticity of polycyclic aromatic hydrocarbons. J. Phys. Org. Chem. 2005;18:706–718. doi: 10.1002/poc.922. DOI

Mandado M., Gonzáles M.J., Mosquera R.A. QTAIM n-center delocalization indices as descriptors of aromaticity in mono and poly heterocycles. J. Comp. Chem. 2007;28:127–136. doi: 10.1002/jcc.20468. PubMed DOI

Polansky O.E., Derflinger G. Zur Clar’schen Theorie Lokaler Benzoider Gebiete in Kondensierten Aromaten. Int. J. Quant. Chem. 1967;1:379–401. doi: 10.1002/qua.560010412. DOI

Bultinck P., Ponec R., Gallegos A., Fijas S., Van Damme S., Carbó-Dorca R. Generalized polansky index as an aromaticity measure in polycyclic aromatic hydrocarbons. Croat. Chem. Acta. 2006;79:363–472.

Matito E., Duran M., Solà M. The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J. Chem. Phys. 2005;122:014109. doi: 10.1063/1.1824895. Erratum in J. Chem. Phys.2006, 125, 059901. PubMed DOI

Jug K., Köster A.M. Aromaticity as a multi-dimensional phenomenon. J. Phys. Org. Chem. 1991;4:163–169. doi: 10.1002/poc.610040307. DOI

Katritzky A.R., Karelson M., Sild S., Krygowski T.M., Jug K. Aromaticity as a quantitative concept. 7. aromaticity reaffirmed as a multidimensional characteristic. J. Org. Chem. 1998;63:5228–5231. doi: 10.1021/jo970939b. DOI

Katritzky A.R., Baczynski P., Musumarra G., Pisani D., Szafran M. Aromaticity as a quantitative concept. A statistical demonstration of the orthogonality of classical and magnetic aromaticity of five- and six-membered heterocycles. J. Am. Chem. Soc. 1989;111:7–15. doi: 10.1021/ja00183a002. DOI

Fijas S., Fowler P.W., Delgado J.L., Hahn U., Bultinck P. Correlation of delocalization indices and current-density maps in polycyclic aromatic hydrocarbons. Chem. Eur. J. 2008;14:3093–3099. PubMed

Cieselski A., Krygowski T.M., Cyrański M.K., Dobrowolski M.A., Aihara J. Graph-topological approach to magnetic properties of benzenoid hydrocarbons. Phys. Chem. Chem. Phys. 2009;11:11447–11455. doi: 10.1039/b913895a. PubMed DOI

Fijas S., Van Damme S., Bultinck P. Multidimensionality of delocalization indices and nucleus independent chemical shifts in polycyclic aromatic hydrocarbons. J. Comp. Chem. 2008;29:358–366. PubMed

Ponec R., Fijas S., Van Damme S., Bultinck P., Gurman I., Stanković S. The close relation between cyclic delocalization, energy effects of cycles and aromaticity. Coll. Czech. Chem. Commun. 2009;74:147–166. doi: 10.1135/cccc2008065. DOI

Mandado M. Theoretical basis for the correlation between energetic, magnetic and electron density criteria of aromaticity: Definition of molecular circuit electric conductance. Theor. Chem. Acc. 2010;126:339–349. doi: 10.1007/s00214-009-0692-z. DOI

Baird N.C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ state of cyclic hydrocarbons. J. Am. Chem. Soc. 1972;94:4941–4948. doi: 10.1021/ja00769a025. DOI

Ilić P., Sinković B., Trinajstić N. Topological resonance energies of conjugated structures. Isr. J. Chem. 1980;20:258–269. doi: 10.1002/ijch.198000081. DOI

Karadakov P.B., Hearnshaw P., Horner K.E. Magnetic shielding, aromaticity, antiaromaticity, and bonding in the low-lying electronic states of benzene and cyclobutadiene. J. Org. Chem. 2016;81:11345–11352. doi: 10.1021/acs.joc.6b02460. PubMed DOI

Karadakov P.B. Ground and excited-state aromaticity in benzene and cyclobutadiene. J. Phys. Chem. A. 2008;112:7303–7309. doi: 10.1021/jp8037335. PubMed DOI

Karadakov P.B. Aromaticity and antiaromaticity in the low-lying electronic states of cyclooctatetraene. J. Phys. Chem. A. 2008;112:12707–12713. doi: 10.1021/jp8067365. PubMed DOI

Feixas F., Vandenbussche J., Bultinck P., Matito E., Solà M. Electron delocalization and aromaticity in low lying excited states of archetypal organic compounds. Phys. Chem. Chem. Phys. 2011;13:20690–20703. doi: 10.1039/c1cp22239b. PubMed DOI

Ayub R., Papadakis R., Jorner K., Zietz B., Ottoson H. The cyclopropyl group: An excited state aromaticity indicator? Chem. Eur. J. 2017;23:13684–13695. doi: 10.1002/chem.201701404. PubMed DOI

Papadakis R., Ottoson H. The excited state antiaromatic benzene ring: A molecular Mr. Hyde? Chem. Soc. Rev. 2015;44:6472–6493. doi: 10.1039/C5CS00057B. PubMed DOI

Ottoson H. Organic photochemistry: Exciting excited-state aromaticity. Nat. Chem. 2012;4:969–971. doi: 10.1038/nchem.1518. PubMed DOI

Oh J., Sung M.Y., Hong Y., Kim D. Spectroscopic diagnosis of excited-state aromaticity: Capturing electronic structures and conformations upon aromaticity reversal. Acc. Chem. Res. 2018;51:1349–1358. doi: 10.1021/acs.accounts.7b00629. PubMed DOI

Karadakov P.B., Al-Yassiri M.A.M., Cooper D.L. Magnetic shielding, aromaticity, antiaromaticity and bonding in the low-lying electronic states of S2N2. Chem. Eur. J. 2018;24:16791–16803. doi: 10.1002/chem.201804292. PubMed DOI

Cabana A., Bachand J., Giguère J. The ν4 vibration–rotation bands of C6H6 and C6D6: The analysis of the bands and the determination of the bond lengths. Can. J. Phys. 1974;52:1949–1955. doi: 10.1139/p74-256. DOI

Eckert-Maksíc M., Vazdar M., Barbatti M., Lischka H., Maksíc Z.B. Automerization reaction of cyclobutadiene and its barrier height: An ab initio benchmark multireference average quadratic coupled cluster study. J. Chem. Phys. 2006;125:064310. doi: 10.1063/1.2222366. PubMed DOI

Perrin A., Flores Antognini A., Zeng X., Beckers H., Willner H., Rauhut G. Vibrational spectrum and gas-phase structure of disulfur dinitride (S2N2) Chem. Eur. J. 2014;20:10323–10331. doi: 10.1002/chem.201402404. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Jr., Vreven T., Kudin K.N., Burant J.C., et al. Gaussian 03, Revision A.01. Gaussian, Inc.; Wallingford, CT, USA: 2004.

Werner H.-J., Knowles P.J., Knizia G., Manby F.R., Schütz M. Molpro: A general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI

Werner H.-J., Knowles P.J., Knizia G., Manby F.R., Schütz M., Celani P., Györffy W., Kats D., Korona T., Lindh R., et al. MOLPRO, Version 2019.2, A Package of Ab Initio Programs, Cardiff, UK. [(accessed on 14 September 2020)]; Available online: http://www.molpro.net.

Giambiagi M., De Giambiagi M.S., Mundim K.C. Definition of a multicentre bond index. Struct. Chem. 1990;1:423–427. doi: 10.1007/BF00671228. DOI

Kar T., Sannigrahi A.B. 3-Center bond index. Chem. Phys. Lett. 1990;173:569–572.

Wiberg K.B. Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron. 1968;24:1083–1096. doi: 10.1016/0040-4020(68)88057-3. DOI

Mayer I. Bond orders and valences from ab initio wave functions. Int. J. Quantum Chem. 1986;29:477–483. doi: 10.1002/qua.560290320. DOI

Ponec R., Mayer I. Investigation of some properties of multicenter bond indices. J. Phys. Chem. A. 1997;101:1738–1741. doi: 10.1021/jp962510e. DOI

Ponec R., Yuzhakov G. Multicenter bonding in organic chemistry. Geometry sensitive 3c–2e bonding in (C…H…C) fragments of organic cations. J. Org. Chem. 2004;69:2992–2996. doi: 10.1021/jo035506p. PubMed DOI

Ponec R., Mandado M. Electron reorganization in allowed and forbidden pericyclic reactions: Multicentre bond indices as a measure of aromaticity and/or antiaromaticity in transition states of pericyclic electrocyclizations. J. Phys. Org. Chem. 2009;22:1225–1232.

Matito E., Solà M., Salvador P., Duran M. Electron sharing indices at the correlated level. application to aromaticity calculations. Faraday Disc. 2007;135:325–345. doi: 10.1039/B605086G. PubMed DOI

Bader R.F.W. Atoms in Molecules. A Quantum Theory. Oxford University Press; Oxford, UK: 1990.

Bochicchio R., Ponec R., Torre A., Lain L. Multicenter bonding within AIM theory. Theor. Chem. Acc. 2001;105:292–298. doi: 10.1007/s002140000236. DOI

Ponec R., Torre A., Lain L., Bochicchio R.C. Multicenter bonding in open-shell systems. A nonlinear population analysis approach. Int. J. Quant. Chem. 2000;77:710–715. doi: 10.1002/(SICI)1097-461X(2000)77:4<710::AID-QUA3>3.0.CO;2-X. DOI

Keith T.A. AIMAll (Version 19.10.12). TK Gristmill Software, Overland Park, KS, USA. [(accessed on 14 September 2020)]; Available online: http://aim.tkgristmill.com.

Salem L., Rowland C. The electronic properties of diradicals. Angew. Chem. Int. Ed. Engl. 1972;11:92–111. doi: 10.1002/anie.197200921. DOI

Cioslowski J., Fleischmann E.D. Assessing molecular similarity from results of ab-initio electronic structure calculations. J. Am. Chem. Soc. 1991;113:64–67. doi: 10.1021/ja00001a012. DOI

Feixas F., Jimenez-Halla J.O.C., Matito E., Poater J., Solà M. A test to evaluate the performance of aromaticity descriptors in all-metal and semimetal clusters. an appraisal of electronic and magnetic indicators of aromaticity. J. Chem. Theory. Comp. 2010;6:1118–1130. doi: 10.1021/ct100034p. DOI

Coulson C.A. On the calculation of the energy in unsaturated hydrocarbon molecules. Proc. Camb. Phil. Soc. 1940;36:201–203. doi: 10.1017/S0305004100017175. DOI

Irons T.J.P., Spence L., David G., Speake B.T., Helgaker T., Teale A.M. Analyzing magnetically induced currents in molecular systems using current-density-functional theory. J. Phys. Chem. A. 2020;124:1321–1333. doi: 10.1021/acs.jpca.9b10833. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...