Are Multicentre Bond Indices and Related Quantities Reliable Predictors of Excited-State Aromaticity?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33086580
PubMed Central
PMC7587523
DOI
10.3390/molecules25204791
PII: molecules25204791
Knihovny.cz E-zdroje
- Klíčová slova
- excited-state aromaticity reversals, magnetic properties of excited states, molecular similarity, multicentre bond indices,
- MeSH
- benzen chemie MeSH
- butadieny chemie MeSH
- elektrony MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- molekulární struktura * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,3-butadiene MeSH Prohlížeč
- benzen MeSH
- butadieny MeSH
Systematic scrutiny is carried out of the ability of multicentre bond indices and the NOEL-based similarity index dAB to serve as excited-state aromaticity criteria. These indices were calculated using state-optimized complete active-space self-consistent field wavefunctions for several low-lying singlet and triplet states of the paradigmatic molecules of benzene and square cyclobutadiene and the inorganic ring S2N2. The comparison of the excited-state indices with aromaticity trends for individual excited states suggested by the values of magnetic aromaticity criteria show that whereas the indices work well for aromaticity reversals between the ground singlet and first triplet electronic states, addressed by Baird's rule, there are no straightforward parallels between the two sets of data for singlet excited states. The problems experienced while applying multicentre bond indices and dAB to singlet excited states are explained by the loss of the information inherently present in wavefunctions and/or pair densities when calculating the first-order density matrix.
Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
Department of Chemistry University of York Heslington York YO10 5DD UK
Zobrazit více v PubMed
Hückel E. Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzol und verwandter Verbindungen. Z. Phys. 1931;70:104–186. doi: 10.1007/BF01339530. DOI
Hückel E. Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. Z. Phys. 1932;76:628–648. doi: 10.1007/BF01341936. DOI
Streitwieser A. Molecular Orbital Theory for Organic Chemists. Wiley; New York, NY, USA: 1961. 239p
Schaad L.J., Hess B.A., Jr. Hückel molecular orbital π resonance energies. A new approach. J. Am. Chem. Soc. 1971;93:305–310.
Dewar M.J.S., Gleicher G.J. Ground states of conjugated molecules. II. Allowance for molecular geometry. J. Am. Chem. Soc. 1965;87:685–692. doi: 10.1021/ja01082a001. DOI
Baird N.C. Dewar resonance energy. J. Chem. Educ. 1971;48:509–513. doi: 10.1021/ed048p509. DOI
Schaad L.J., Hess B.A. Dewar resonance energy. Chem. Rev. 2001;101:1465–1486. doi: 10.1021/cr9903609. PubMed DOI
Aihara J. A new definition of Dewar-type resonance energies. J. Am. Chem. Soc. 1976;98:2750–2758. doi: 10.1021/ja00426a013. DOI
Gutman I., Milun M., Trinajstič N. Graph theory and molecular orbitals. 19. Nonparametric resonance energies for arbitrary conjugated hydrocarbons. J. Am. Chem. Soc. 1977;99:1692–1704. doi: 10.1021/ja00448a002. DOI
Kuwajima S. Valence bond theory of aromaticity. J. Am. Chem. Soc. 1984;106:6496–6502. doi: 10.1021/ja00334a007. DOI
Pauling L. The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys. 1936;4:673–677. doi: 10.1063/1.1749766. DOI
London F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium. 1937;8:397–409. doi: 10.1051/jphysrad:01937008010039700. DOI
Pople J.A. Proton magnetic resonance of hydrocarbons. J. Chem. Phys. 1956;24:1111. doi: 10.1063/1.1742701. DOI
Pople J.A., Untch K.G. Induced paramagnetic ring currents. J. Am. Chem. Soc. 1966;88:4811–4815. doi: 10.1021/ja00973a009. DOI
Jug K. A bond order approach to ring current and aromaticity. J. Org. Chem. 1983;48:1344–1348. doi: 10.1021/jo00156a038. DOI
Gomes J.A.N.F., Mallion R. Aromaticity and ring currents. Chem. Rev. 2001;101:1349–1384. doi: 10.1021/cr990323h. PubMed DOI
Fowler P.J., Steiner E., Havenith R.W.A., Jenneskens L.W. Current density, chemical shifts and aromaticity. Magn. Reson. Chem. 2004;42:S68–S78. doi: 10.1002/mrc.1445. PubMed DOI
Schleyer P.V.R., Maerker C., Dransfeld A., Jiao H., Van Eikema Hommes N.J.R. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1966;118:6317–6318. doi: 10.1021/ja960582d. PubMed DOI
Aihara J. Circuit Resonance Energy. A key quantity that links energetic and magnetic criteria of aromaticity. J. Am. Chem. Soc. 2006;128:2873–2879. doi: 10.1021/ja056430c. PubMed DOI
Evans M.G., Warhurst E. The activation energy of diene association reactions. Trans. Faraday Soc. 1938;34:614–625. doi: 10.1039/tf9383400614. DOI
Dewar M.J.S. Aromaticity and pericyclic reactions. Angew. Chem. Int. Ed. Engl. 1971;10:761–776. doi: 10.1002/anie.197107611. DOI
Van der Hart W.J., Mulder J.C.C., Oosterhof L.J. Extended valence bond theory, aromaticity and the Woodward-Hoffmann rules. J. Am. Chem. Soc. 1972;94:5724–5730. doi: 10.1021/ja00771a032. DOI
Aihara J. Aromaticity-based theory of pericyclic reactions. Bull. Chem. Soc. Jpn. 1978;51:1788–1792. doi: 10.1246/bcsj.51.1788. DOI
Kruszewski J., Krygowski T.M. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972;13:3839–3842. doi: 10.1016/S0040-4039(01)94175-9. DOI
Krygowski T.M., Cyrański M.K. Structural aspects of aromaticity. Chem. Rev. 2001;101:1385–1420. doi: 10.1021/cr990326u. PubMed DOI
Kleinpeter E., Koch A. Antiaromaticity proved by anisotropic effect in 1H NMR spectra. J. Phys. Chem. A. 2012;16:5674–5680. doi: 10.1021/jp300860q. PubMed DOI
Karadakov P.B., Horner K.E. Magnetic shielding in and around benzene and cyclobutadiene: A source of information about aromaticity, antiaromaticity and chemical bonding. J. Phys. Chem. A. 2013;117:518–523. doi: 10.1021/jp311536c. PubMed DOI
Giambiagi M., De Giambiagi M.S., Dos Santos Silva C.D., De Fuguereido A.P. Multicenter bond indices as a measure of aromaticity. Phys. Chem. Chem. Phys. 2000;2:3381–3392. doi: 10.1039/b002009p. DOI
Bultinck P., Ponec R., Van Damme S. Multicenter bond indices as a new measure of aromaticity of polycyclic aromatic hydrocarbons. J. Phys. Org. Chem. 2005;18:706–718. doi: 10.1002/poc.922. DOI
Mandado M., Gonzáles M.J., Mosquera R.A. QTAIM n-center delocalization indices as descriptors of aromaticity in mono and poly heterocycles. J. Comp. Chem. 2007;28:127–136. doi: 10.1002/jcc.20468. PubMed DOI
Polansky O.E., Derflinger G. Zur Clar’schen Theorie Lokaler Benzoider Gebiete in Kondensierten Aromaten. Int. J. Quant. Chem. 1967;1:379–401. doi: 10.1002/qua.560010412. DOI
Bultinck P., Ponec R., Gallegos A., Fijas S., Van Damme S., Carbó-Dorca R. Generalized polansky index as an aromaticity measure in polycyclic aromatic hydrocarbons. Croat. Chem. Acta. 2006;79:363–472.
Matito E., Duran M., Solà M. The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J. Chem. Phys. 2005;122:014109. doi: 10.1063/1.1824895. Erratum in J. Chem. Phys.2006, 125, 059901. PubMed DOI
Jug K., Köster A.M. Aromaticity as a multi-dimensional phenomenon. J. Phys. Org. Chem. 1991;4:163–169. doi: 10.1002/poc.610040307. DOI
Katritzky A.R., Karelson M., Sild S., Krygowski T.M., Jug K. Aromaticity as a quantitative concept. 7. aromaticity reaffirmed as a multidimensional characteristic. J. Org. Chem. 1998;63:5228–5231. doi: 10.1021/jo970939b. DOI
Katritzky A.R., Baczynski P., Musumarra G., Pisani D., Szafran M. Aromaticity as a quantitative concept. A statistical demonstration of the orthogonality of classical and magnetic aromaticity of five- and six-membered heterocycles. J. Am. Chem. Soc. 1989;111:7–15. doi: 10.1021/ja00183a002. DOI
Fijas S., Fowler P.W., Delgado J.L., Hahn U., Bultinck P. Correlation of delocalization indices and current-density maps in polycyclic aromatic hydrocarbons. Chem. Eur. J. 2008;14:3093–3099. PubMed
Cieselski A., Krygowski T.M., Cyrański M.K., Dobrowolski M.A., Aihara J. Graph-topological approach to magnetic properties of benzenoid hydrocarbons. Phys. Chem. Chem. Phys. 2009;11:11447–11455. doi: 10.1039/b913895a. PubMed DOI
Fijas S., Van Damme S., Bultinck P. Multidimensionality of delocalization indices and nucleus independent chemical shifts in polycyclic aromatic hydrocarbons. J. Comp. Chem. 2008;29:358–366. PubMed
Ponec R., Fijas S., Van Damme S., Bultinck P., Gurman I., Stanković S. The close relation between cyclic delocalization, energy effects of cycles and aromaticity. Coll. Czech. Chem. Commun. 2009;74:147–166. doi: 10.1135/cccc2008065. DOI
Mandado M. Theoretical basis for the correlation between energetic, magnetic and electron density criteria of aromaticity: Definition of molecular circuit electric conductance. Theor. Chem. Acc. 2010;126:339–349. doi: 10.1007/s00214-009-0692-z. DOI
Baird N.C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ state of cyclic hydrocarbons. J. Am. Chem. Soc. 1972;94:4941–4948. doi: 10.1021/ja00769a025. DOI
Ilić P., Sinković B., Trinajstić N. Topological resonance energies of conjugated structures. Isr. J. Chem. 1980;20:258–269. doi: 10.1002/ijch.198000081. DOI
Karadakov P.B., Hearnshaw P., Horner K.E. Magnetic shielding, aromaticity, antiaromaticity, and bonding in the low-lying electronic states of benzene and cyclobutadiene. J. Org. Chem. 2016;81:11345–11352. doi: 10.1021/acs.joc.6b02460. PubMed DOI
Karadakov P.B. Ground and excited-state aromaticity in benzene and cyclobutadiene. J. Phys. Chem. A. 2008;112:7303–7309. doi: 10.1021/jp8037335. PubMed DOI
Karadakov P.B. Aromaticity and antiaromaticity in the low-lying electronic states of cyclooctatetraene. J. Phys. Chem. A. 2008;112:12707–12713. doi: 10.1021/jp8067365. PubMed DOI
Feixas F., Vandenbussche J., Bultinck P., Matito E., Solà M. Electron delocalization and aromaticity in low lying excited states of archetypal organic compounds. Phys. Chem. Chem. Phys. 2011;13:20690–20703. doi: 10.1039/c1cp22239b. PubMed DOI
Ayub R., Papadakis R., Jorner K., Zietz B., Ottoson H. The cyclopropyl group: An excited state aromaticity indicator? Chem. Eur. J. 2017;23:13684–13695. doi: 10.1002/chem.201701404. PubMed DOI
Papadakis R., Ottoson H. The excited state antiaromatic benzene ring: A molecular Mr. Hyde? Chem. Soc. Rev. 2015;44:6472–6493. doi: 10.1039/C5CS00057B. PubMed DOI
Ottoson H. Organic photochemistry: Exciting excited-state aromaticity. Nat. Chem. 2012;4:969–971. doi: 10.1038/nchem.1518. PubMed DOI
Oh J., Sung M.Y., Hong Y., Kim D. Spectroscopic diagnosis of excited-state aromaticity: Capturing electronic structures and conformations upon aromaticity reversal. Acc. Chem. Res. 2018;51:1349–1358. doi: 10.1021/acs.accounts.7b00629. PubMed DOI
Karadakov P.B., Al-Yassiri M.A.M., Cooper D.L. Magnetic shielding, aromaticity, antiaromaticity and bonding in the low-lying electronic states of S2N2. Chem. Eur. J. 2018;24:16791–16803. doi: 10.1002/chem.201804292. PubMed DOI
Cabana A., Bachand J., Giguère J. The ν4 vibration–rotation bands of C6H6 and C6D6: The analysis of the bands and the determination of the bond lengths. Can. J. Phys. 1974;52:1949–1955. doi: 10.1139/p74-256. DOI
Eckert-Maksíc M., Vazdar M., Barbatti M., Lischka H., Maksíc Z.B. Automerization reaction of cyclobutadiene and its barrier height: An ab initio benchmark multireference average quadratic coupled cluster study. J. Chem. Phys. 2006;125:064310. doi: 10.1063/1.2222366. PubMed DOI
Perrin A., Flores Antognini A., Zeng X., Beckers H., Willner H., Rauhut G. Vibrational spectrum and gas-phase structure of disulfur dinitride (S2N2) Chem. Eur. J. 2014;20:10323–10331. doi: 10.1002/chem.201402404. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Jr., Vreven T., Kudin K.N., Burant J.C., et al. Gaussian 03, Revision A.01. Gaussian, Inc.; Wallingford, CT, USA: 2004.
Werner H.-J., Knowles P.J., Knizia G., Manby F.R., Schütz M. Molpro: A general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI
Werner H.-J., Knowles P.J., Knizia G., Manby F.R., Schütz M., Celani P., Györffy W., Kats D., Korona T., Lindh R., et al. MOLPRO, Version 2019.2, A Package of Ab Initio Programs, Cardiff, UK. [(accessed on 14 September 2020)]; Available online: http://www.molpro.net.
Giambiagi M., De Giambiagi M.S., Mundim K.C. Definition of a multicentre bond index. Struct. Chem. 1990;1:423–427. doi: 10.1007/BF00671228. DOI
Kar T., Sannigrahi A.B. 3-Center bond index. Chem. Phys. Lett. 1990;173:569–572.
Wiberg K.B. Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron. 1968;24:1083–1096. doi: 10.1016/0040-4020(68)88057-3. DOI
Mayer I. Bond orders and valences from ab initio wave functions. Int. J. Quantum Chem. 1986;29:477–483. doi: 10.1002/qua.560290320. DOI
Ponec R., Mayer I. Investigation of some properties of multicenter bond indices. J. Phys. Chem. A. 1997;101:1738–1741. doi: 10.1021/jp962510e. DOI
Ponec R., Yuzhakov G. Multicenter bonding in organic chemistry. Geometry sensitive 3c–2e bonding in (C…H…C) fragments of organic cations. J. Org. Chem. 2004;69:2992–2996. doi: 10.1021/jo035506p. PubMed DOI
Ponec R., Mandado M. Electron reorganization in allowed and forbidden pericyclic reactions: Multicentre bond indices as a measure of aromaticity and/or antiaromaticity in transition states of pericyclic electrocyclizations. J. Phys. Org. Chem. 2009;22:1225–1232.
Matito E., Solà M., Salvador P., Duran M. Electron sharing indices at the correlated level. application to aromaticity calculations. Faraday Disc. 2007;135:325–345. doi: 10.1039/B605086G. PubMed DOI
Bader R.F.W. Atoms in Molecules. A Quantum Theory. Oxford University Press; Oxford, UK: 1990.
Bochicchio R., Ponec R., Torre A., Lain L. Multicenter bonding within AIM theory. Theor. Chem. Acc. 2001;105:292–298. doi: 10.1007/s002140000236. DOI
Ponec R., Torre A., Lain L., Bochicchio R.C. Multicenter bonding in open-shell systems. A nonlinear population analysis approach. Int. J. Quant. Chem. 2000;77:710–715. doi: 10.1002/(SICI)1097-461X(2000)77:4<710::AID-QUA3>3.0.CO;2-X. DOI
Keith T.A. AIMAll (Version 19.10.12). TK Gristmill Software, Overland Park, KS, USA. [(accessed on 14 September 2020)]; Available online: http://aim.tkgristmill.com.
Salem L., Rowland C. The electronic properties of diradicals. Angew. Chem. Int. Ed. Engl. 1972;11:92–111. doi: 10.1002/anie.197200921. DOI
Cioslowski J., Fleischmann E.D. Assessing molecular similarity from results of ab-initio electronic structure calculations. J. Am. Chem. Soc. 1991;113:64–67. doi: 10.1021/ja00001a012. DOI
Feixas F., Jimenez-Halla J.O.C., Matito E., Poater J., Solà M. A test to evaluate the performance of aromaticity descriptors in all-metal and semimetal clusters. an appraisal of electronic and magnetic indicators of aromaticity. J. Chem. Theory. Comp. 2010;6:1118–1130. doi: 10.1021/ct100034p. DOI
Coulson C.A. On the calculation of the energy in unsaturated hydrocarbon molecules. Proc. Camb. Phil. Soc. 1940;36:201–203. doi: 10.1017/S0305004100017175. DOI
Irons T.J.P., Spence L., David G., Speake B.T., Helgaker T., Teale A.M. Analyzing magnetically induced currents in molecular systems using current-density-functional theory. J. Phys. Chem. A. 2020;124:1321–1333. doi: 10.1021/acs.jpca.9b10833. PubMed DOI