A Screen for PKN3 Substrates Reveals an Activating Phosphorylation of ARHGAP18
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785
Ministerstvo Školství, Mládeže a Tělovýchovy
740120
Univerzita Karlova v Praze
19-08410S
Grantová Agentura České Republiky
PubMed
33092266
PubMed Central
PMC7594087
DOI
10.3390/ijms21207769
PII: ijms21207769
Knihovny.cz E-zdroje
- Klíčová slova
- ARHGAP18, PKN3, Rho-GTP, phosphoproteomic screen, phosphorylation,
- MeSH
- fosforylace MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proteinkinasa C genetika metabolismus MeSH
- proteiny aktivující GTPasu metabolismus MeSH
- proteomika metody MeSH
- sekvence aminokyselin MeSH
- signální transdukce MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- zpětná vazba fyziologická MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ARHGAP18 protein, human MeSH Prohlížeč
- protein kinase N MeSH Prohlížeč
- proteinkinasa C MeSH
- proteiny aktivující GTPasu MeSH
Protein kinase N3 (PKN3) is a serine/threonine kinase implicated in tumor progression of multiple cancer types, however, its substrates and effector proteins still remain largely understudied. In the present work we aimed to identify novel PKN3 substrates in a phosphoproteomic screen using analog sensitive PKN3. Among the identified putative substrates we selected ARHGAP18, a protein from RhoGAP family, for validation of the screen and further study. We confirmed that PKN3 can phosphorylate ARHGAP18 in vitro and we also characterized the interaction of the two proteins, which is mediated via the N-terminal part of ARHGAP18. We present strong evidence that PKN3-ARHGAP18 interaction is increased upon ARHGAP18 phosphorylation and that the phosphorylation of ARHGAP18 by PKN3 enhances its GAP domain activity and contributes to negative regulation of active RhoA. Taken together, we identified new set of potential PKN3 substrates and revealed a new negative feedback regulatory mechanism of Rho signaling mediated by PKN3-induced ARHGAP18 activation.
Zobrazit více v PubMed
Hashimoto T., Mukai H., Kawamata T. Localization of PKN mRNA in the rat brain. Mol. Brain Res. 1998 doi: 10.1016/S0169-328X(98)00155-7. PubMed DOI
Mukai H., Ono Y. A novel protein kinase with leucine zipper-like sequences: Its catalytic domain is highly homologous to that of protein kinase C. Biochem. Biophys. Res. Commun. 1994 doi: 10.1006/bbrc.1994.1313. PubMed DOI
Quilliam L.A., Lambert Q.T., Mickelson-Young L.A., Westwick J.K., Sparks A.B., Kay B.K., Jenkins N.A., Gilbert D.J., Copeland N.G., Der C.J. Isolation of a NCK-associated kinase, PRK2, an SH3-binding protein and potential effector of Rho protein signaling. J. Biol. Chem. 1996;271:28772–28776. doi: 10.1074/jbc.271.46.28772. PubMed DOI
Aleku M., Schulz P., Keil O., Santel A., Schaeper U., Dieckhoff B., Janke O., Endruschat J., Durieux B., Röder N., et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008;68:9788–9798. doi: 10.1158/0008-5472.CAN-08-2428. PubMed DOI
Uehara S., Udagawa N., Mukai H., Ishihara A., Maeda K., Yamashita T., Murakami K., Nishita M., Nakamura T., Kato S., et al. Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci. Signal. 2017;10:1–12. doi: 10.1126/scisignal.aan0023. PubMed DOI
Uehara S., Udagawa N., Kobayashi Y. Regulation of osteoclast function via Rho-Pkn3-c-Src pathways. J. Oral Biosci. 2019;61:135–140. doi: 10.1016/j.job.2019.07.002. PubMed DOI
Oishi K., Mukai H., Shibata H., Takahashi M., Ona Y. Identification and characterization of PKNβ, a novel isoform of protein kinase PKN: Expression and arachidonic acid dependency are different from those of PKNα. Biochem. Biophys. Res. 1999;814:808–814. doi: 10.1006/bbrc.1999.1116. PubMed DOI
Leenders F., Möpert K., Schmiedeknecht A., Santel A., Czauderna F., Aleku M., Penschuck S., Dames S., Sternberger M., Röhl T., et al. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J. 2004;23:3303–3313. doi: 10.1038/sj.emboj.7600345. PubMed DOI PMC
Unsal-Kacmaz K., Ragunathan S., Rosfjord E., Dann S., Upeslacis E., Grillo M., Hernandez R., Mack F., Klippel A. The interaction of PKN3 with RhoC promotes malignant growth. Mol. Oncol. 2012;6:284–298. doi: 10.1016/j.molonc.2011.12.001. PubMed DOI PMC
Möpert K., Löffler K., Röder N., Kaufmann J., Santel A. Depletion of protein kinase N3 (PKN3) impairs actin and adherens junctions dynamics and attenuates endothelial cell activation. Eur. J. Cell Biol. 2012;91:694–705. doi: 10.1016/j.ejcb.2012.03.010. PubMed DOI
Santel A., Aleku M., Roder N., Mopert K., Durieux B., Janke O., Keil O., Endruschat J., Dames S., Lange C., et al. Atu027 Prevents Pulmonary Metastasis in Experimental and Spontaneous Mouse Metastasis Models. Clin. Cancer Res. 2010;16:5469–5480. doi: 10.1158/1078-0432.CCR-10-1994. PubMed DOI
Gemperle J., Hexnerová R., Lepšík M., Tesina P., Dibus M., Novotný M., Brábek J., Veverka V., Rosel D. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Sci. Rep. 2017;7:8057. doi: 10.1038/s41598-017-08303-4. PubMed DOI PMC
Gemperle J., Dibus M., Koudelková L., Rosel D., Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol. Oncol. 2019;13:264–289. doi: 10.1002/1878-0261.12401. PubMed DOI PMC
Kraus M., Dolinski B., Rosahl T.W., Magee J.A. Protein kinase N3 deficiency impedes PI3-kinase pathway-driven leukemogenesis without affecting normal hematopoiesis. Leukemia. 2014;29:255–258. doi: 10.1038/leu.2014.278. PubMed DOI
Mukai H., Muramatsu A., Mashud R., Kubouchi K., Tsujimoto S., Hongu T., Kanaho Y., Tsubaki M., Nishida S., Shioi G., et al. PKN3 is the major regulator of angiogenesis and tumor metastasis in mice. Sci. Rep. 2016;6:18979. doi: 10.1038/srep18979. PubMed DOI PMC
Allen J.J., Li M., Brinkworth C.S., Paulson J.L., Wang D., Hübner A., Chou W.-H., Davis R.J., Burlingame A.L., Messing R.O., et al. A semisynthetic epitope for kinase substrates. Nat. Methods. 2007;4:511–516. doi: 10.1038/nmeth1048. PubMed DOI PMC
Hertz N.T., Wang B.T., Allen J.J., Zhang C., Dar A.C., Burlingame A.L., Shokat K.M. Chemical Genetic Approach for Kinase-Substrate Mapping by Covalent Capture of Thiophosphopeptides and Analysis by Mass Spectrometry. Curr. Protoc. Chem. Biol. 2010;2:15–36. doi: 10.1002/9780470559277.ch090201. PubMed DOI PMC
Chang G.H., Lay A.J., Ting K.K., Zhao Y., Coleman P.R., Powter E.E., Formaz-Preston A., Jolly C.J., Bower N.I., Hogan B.M., et al. Arhgap18: An endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions. Small GTPases. 2014;5 doi: 10.4161/21541248.2014.975002. PubMed DOI PMC
Maeda M., Hasegawa H., Hyodo T., Ito S., Asano E., Yuang H., Funasaka K., Shimokata K., Hasegawa Y., Hamaguchi M., et al. ARHGAP18, a GTPase-activating protein for RhoA, controls cell shape, spreading and motility. Mol. Biol. Cell. 2011;22:3840–3852. doi: 10.1091/mbc.e11-04-0364. PubMed DOI PMC
Li X., Tao Y., Wang X., Wang T., Liu J. Advanced glycosylation end products (AGEs) controls proliferation, invasion and permeability through orchestrating ARHGAP18/RhoA pathway in human umbilical vein endothelial cells. Glycoconj. J. 2020;37:209–219. doi: 10.1007/s10719-020-09908-0. PubMed DOI
Porazinski S., Wang H., Asaoka Y., Behrndt M., Miyamoto T., Morita H., Hata S., Sasaki T., Krens S.F.G., Osada Y., et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. 2015;521:217–221. doi: 10.1038/nature14215. PubMed DOI PMC
Vautrin-Glabik A., Botia B., Kischel P., Ouadid-Ahidouch H., Rodat-Despoix L. IP3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. Biochim. Biophys. Acta - Mol. Cell Res. 2018;1865:945–958. doi: 10.1016/j.bbamcr.2018.04.002. PubMed DOI
Lovelace M.D., Powter E.E., Coleman P.R., Zhao Y., Parker A., Chang G.H., Lay A.J., Hunter J., McGrath A.P., Jormakka M., et al. The RhoGAP protein ARHGAP18/SENEX localizes to microtubules and regulates their stability in endothelial cells. Mol. Biol. Cell. 2017;28:1066–1078. doi: 10.1091/mbc.e16-05-0285. PubMed DOI PMC
Li Y., Ji S., Fu L., Jiang T., Wu D., Meng F. Over-expression of ARHGAP18 suppressed cell proliferation, migration, invasion and tumor growth in gastric cancer by restraining over-activation of MAPK signaling pathways. Onco. Targets. Ther. 2018;11:279–290. doi: 10.2147/OTT.S130255. PubMed DOI PMC
Humphries B., Wang Z., Li Y., Jhan J.R., Jiang Y., Yang C. ARHGAP18 downregulation by miR-200b suppresses metastasis of triple-negative breast cancer by enhancing activation of RhoA. Cancer Res. 2017;77:4051–4064. doi: 10.1158/0008-5472.CAN-16-3141. PubMed DOI
Aguilar-Rojas A., Maya-Núñez G., Huerta-Reyes M., Pérez-Solis M.A., Silva-García R., Guillén N., Olivo-Marin J.C. Activation of human gonadotropin-releasing hormone receptor promotes down regulation of ARHGAP18 and regulates the cell invasion of MDA-MB-231 cells. Mol. Cell. Endocrinol. 2018;460:94–103. doi: 10.1016/j.mce.2017.07.009. PubMed DOI
Aleskandarany M.A., Sonbul S., Surridge R., Mukherjee A., Caldas C., Diez-Rodriguez M., Ashankyty I., Albrahim K.I., Elmouna A.M., Aneja R., et al. Rho-GTPase activating-protein 18: A biomarker associated with good prognosis in invasive breast cancer. Br. J. Cancer. 2017;117:1176–1184. doi: 10.1038/bjc.2017.261. PubMed DOI PMC
Coleman P.R., Hahn C.N., Grimshaw M., Lu Y., Li X., Brautigan P.J., Beck K., Stocker R., Vadas M.A., Gamble J.R. Stress-induced premature senescence mediated by a novel gene, SENEX, results in an anti-inflammatory phenotype in endothelial cells. Blood. 2010;116:4016–4024. doi: 10.1182/blood-2009-11-252700. PubMed DOI
Lay A.J., Coleman P.R., Formaz-Preston A., Ka Ting K., Roediger B., Weninger W., Schwartz M.A., Vadas M.A., Gamble J.R. ARHGAP18: A flow-responsive gene that regulates endothelial cell alignment and protects against atherosclerosis. J. Am. Heart Assoc. 2019;8 doi: 10.1161/JAHA.118.010057. PubMed DOI PMC
Coleman P.R., Lay A.J., Ting K.K., Zhao Y., Li J., Jarrah S., Vadas M.A., Gamble J.R. YAP and the RhoC regulator ARHGAP18, are required to mediate flow-dependent endothelial cell alignment. Cell Commun. Signal. 2020;18 doi: 10.1186/s12964-020-0511-7. PubMed DOI PMC
Cibrián Uhalte E., Kirchner M., Hellwig N., Allen J.J., Donat S., Shokat K.M., Selbach M., Abdelilah-Seyfried S. In Vivo Conditions to Identify Prkci Phosphorylation Targets Using the Analog-Sensitive Kinase Method in Zebrafish. PLoS ONE. 2012;7:e40000. doi: 10.1371/journal.pone.0040000. PubMed DOI PMC
Ge S.X., Jung D., Jung D., Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Shibata H., Oishi K., Yamagiwa A., Matsumoto M., Mukai H., Ono Y. PKNbeta interacts with the SH3 Domains of Graf and a Novel Graf Related Protein, Graf 2, Which Are GTPase Activating Proteins for Rho. J. Biochem. 2001;31:23–31. doi: 10.1093/oxfordjournals.jbchem.a002958. PubMed DOI
Collazos A., Michael N., Whelan R.D.H., Kelly G., Mellor H., Pang L.C.H., Totty N., Parker P.J. Site recognition and substrate screens for PKN family proteins. Biochem. J. 2011;438:535–543. doi: 10.1042/BJ20110521. PubMed DOI
Browne C.M., Jiang B., Ficarro S.B., Doctor Z.M., Johnson J.L., Card J.D., Sivakumaren S.C., Alexander W.M., Yaron T.M., Murphy C.J., et al. A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. J. Am. Chem. Soc. 2019;141:191–203. doi: 10.1021/jacs.8b07911. PubMed DOI PMC
Linardopoulou E.V., Parghi S.S., Friedman C., Osborn G.E., Parkhurst S.M., Trask B.J. Human Subtelomeric WASH Genes Encode a New Subclass of the WASP Family. PLoS Genet. 2007;3:e237. doi: 10.1371/journal.pgen.0030237. PubMed DOI PMC
Yang C., Pring M., Wear M.A., Huang M., Cooper J.A., Svitkina T.M., Zigmond S.H. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev. Cell. 2005;9:209–221. doi: 10.1016/j.devcel.2005.06.008. PubMed DOI PMC
Liang Y., Niederstrasser H., Edwards M., Jackson C.E., Cooper J.A. Distinct roles for CARMIL isoforms in cell migration. Mol. Biol. Cell. 2009;20:5290–5305. doi: 10.1091/mbc.e08-10-1071. PubMed DOI PMC
Mori K., Amano M., Takefuji M., Kato K., Morita Y., Nishioka T., Matsuura Y., Murohara T., Kaibuchi K. Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP. J. Biol. Chem. 2009;284:5067–5076. doi: 10.1074/jbc.M806853200. PubMed DOI
Jiang W., Betson M., Mulloy R., Foster R., Lévay M., Ligeti E., Settleman J. P190A RhoGAP is a glycogen synthase kinase-3-β substrate required for polarized cell migration. J. Biol. Chem. 2008;283:20978–20988. doi: 10.1074/jbc.M802588200. PubMed DOI PMC
Minoshima Y., Kawashima T., Hirose K., Tonozuka Y., Kawajiri A., Bao Y.C., Deng X., Tatsuka M., Narumiya S., May W.S., et al. Phosphorylation by Aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell. 2003;4:549–560. doi: 10.1016/S1534-5807(03)00089-3. PubMed DOI
Luo W., Janoštiak R., Tolde O., Ryzhova L.M., Koudelková L., Dibus M., Brábek J., Hanks S.K., Rosel D. ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility. J. Cell Sci. 2017;130:2382–2393. doi: 10.1242/jcs.197434. PubMed DOI PMC
Lusis A.J. Atherosclerosis. Nature. 2000;407:233–241. doi: 10.1038/35025203. PubMed DOI PMC
Hägg S., Skogsberg J., Lundström J., Noori P., Nilsson R., Zhong H., Maleki S., Shang M.M., Brinne B.R., Bradshaw M., et al. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) study. PLoS Genet. 2009;5:e1000754. doi: 10.1371/journal.pgen.1000754. PubMed DOI PMC
Zhang C.J., Zhu N., Liu Z., Shi Z., Long J., Zu X.Y., Tang Z.W., Hu Z.Y., Liao D.F., Qin L. Wnt5a/Ror2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2020;1865:158547. doi: 10.1016/j.bbalip.2019.158547. PubMed DOI
García-Mata R., Wennerberg K., Arthur W.T., Noren N.K., Ellerbroek S.M., Burridge K. Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol. 2006;406:425–437. doi: 10.1016/S0076-6879(06)06031-9. PubMed DOI