A Screen for PKN3 Substrates Reveals an Activating Phosphorylation of ARHGAP18

. 2020 Oct 20 ; 21 (20) : . [epub] 20201020

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33092266

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785 Ministerstvo Školství, Mládeže a Tělovýchovy
740120 Univerzita Karlova v Praze
19-08410S Grantová Agentura České Republiky

Protein kinase N3 (PKN3) is a serine/threonine kinase implicated in tumor progression of multiple cancer types, however, its substrates and effector proteins still remain largely understudied. In the present work we aimed to identify novel PKN3 substrates in a phosphoproteomic screen using analog sensitive PKN3. Among the identified putative substrates we selected ARHGAP18, a protein from RhoGAP family, for validation of the screen and further study. We confirmed that PKN3 can phosphorylate ARHGAP18 in vitro and we also characterized the interaction of the two proteins, which is mediated via the N-terminal part of ARHGAP18. We present strong evidence that PKN3-ARHGAP18 interaction is increased upon ARHGAP18 phosphorylation and that the phosphorylation of ARHGAP18 by PKN3 enhances its GAP domain activity and contributes to negative regulation of active RhoA. Taken together, we identified new set of potential PKN3 substrates and revealed a new negative feedback regulatory mechanism of Rho signaling mediated by PKN3-induced ARHGAP18 activation.

Zobrazit více v PubMed

Hashimoto T., Mukai H., Kawamata T. Localization of PKN mRNA in the rat brain. Mol. Brain Res. 1998 doi: 10.1016/S0169-328X(98)00155-7. PubMed DOI

Mukai H., Ono Y. A novel protein kinase with leucine zipper-like sequences: Its catalytic domain is highly homologous to that of protein kinase C. Biochem. Biophys. Res. Commun. 1994 doi: 10.1006/bbrc.1994.1313. PubMed DOI

Quilliam L.A., Lambert Q.T., Mickelson-Young L.A., Westwick J.K., Sparks A.B., Kay B.K., Jenkins N.A., Gilbert D.J., Copeland N.G., Der C.J. Isolation of a NCK-associated kinase, PRK2, an SH3-binding protein and potential effector of Rho protein signaling. J. Biol. Chem. 1996;271:28772–28776. doi: 10.1074/jbc.271.46.28772. PubMed DOI

Aleku M., Schulz P., Keil O., Santel A., Schaeper U., Dieckhoff B., Janke O., Endruschat J., Durieux B., Röder N., et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008;68:9788–9798. doi: 10.1158/0008-5472.CAN-08-2428. PubMed DOI

Uehara S., Udagawa N., Mukai H., Ishihara A., Maeda K., Yamashita T., Murakami K., Nishita M., Nakamura T., Kato S., et al. Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci. Signal. 2017;10:1–12. doi: 10.1126/scisignal.aan0023. PubMed DOI

Uehara S., Udagawa N., Kobayashi Y. Regulation of osteoclast function via Rho-Pkn3-c-Src pathways. J. Oral Biosci. 2019;61:135–140. doi: 10.1016/j.job.2019.07.002. PubMed DOI

Oishi K., Mukai H., Shibata H., Takahashi M., Ona Y. Identification and characterization of PKNβ, a novel isoform of protein kinase PKN: Expression and arachidonic acid dependency are different from those of PKNα. Biochem. Biophys. Res. 1999;814:808–814. doi: 10.1006/bbrc.1999.1116. PubMed DOI

Leenders F., Möpert K., Schmiedeknecht A., Santel A., Czauderna F., Aleku M., Penschuck S., Dames S., Sternberger M., Röhl T., et al. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J. 2004;23:3303–3313. doi: 10.1038/sj.emboj.7600345. PubMed DOI PMC

Unsal-Kacmaz K., Ragunathan S., Rosfjord E., Dann S., Upeslacis E., Grillo M., Hernandez R., Mack F., Klippel A. The interaction of PKN3 with RhoC promotes malignant growth. Mol. Oncol. 2012;6:284–298. doi: 10.1016/j.molonc.2011.12.001. PubMed DOI PMC

Möpert K., Löffler K., Röder N., Kaufmann J., Santel A. Depletion of protein kinase N3 (PKN3) impairs actin and adherens junctions dynamics and attenuates endothelial cell activation. Eur. J. Cell Biol. 2012;91:694–705. doi: 10.1016/j.ejcb.2012.03.010. PubMed DOI

Santel A., Aleku M., Roder N., Mopert K., Durieux B., Janke O., Keil O., Endruschat J., Dames S., Lange C., et al. Atu027 Prevents Pulmonary Metastasis in Experimental and Spontaneous Mouse Metastasis Models. Clin. Cancer Res. 2010;16:5469–5480. doi: 10.1158/1078-0432.CCR-10-1994. PubMed DOI

Gemperle J., Hexnerová R., Lepšík M., Tesina P., Dibus M., Novotný M., Brábek J., Veverka V., Rosel D. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Sci. Rep. 2017;7:8057. doi: 10.1038/s41598-017-08303-4. PubMed DOI PMC

Gemperle J., Dibus M., Koudelková L., Rosel D., Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol. Oncol. 2019;13:264–289. doi: 10.1002/1878-0261.12401. PubMed DOI PMC

Kraus M., Dolinski B., Rosahl T.W., Magee J.A. Protein kinase N3 deficiency impedes PI3-kinase pathway-driven leukemogenesis without affecting normal hematopoiesis. Leukemia. 2014;29:255–258. doi: 10.1038/leu.2014.278. PubMed DOI

Mukai H., Muramatsu A., Mashud R., Kubouchi K., Tsujimoto S., Hongu T., Kanaho Y., Tsubaki M., Nishida S., Shioi G., et al. PKN3 is the major regulator of angiogenesis and tumor metastasis in mice. Sci. Rep. 2016;6:18979. doi: 10.1038/srep18979. PubMed DOI PMC

Allen J.J., Li M., Brinkworth C.S., Paulson J.L., Wang D., Hübner A., Chou W.-H., Davis R.J., Burlingame A.L., Messing R.O., et al. A semisynthetic epitope for kinase substrates. Nat. Methods. 2007;4:511–516. doi: 10.1038/nmeth1048. PubMed DOI PMC

Hertz N.T., Wang B.T., Allen J.J., Zhang C., Dar A.C., Burlingame A.L., Shokat K.M. Chemical Genetic Approach for Kinase-Substrate Mapping by Covalent Capture of Thiophosphopeptides and Analysis by Mass Spectrometry. Curr. Protoc. Chem. Biol. 2010;2:15–36. doi: 10.1002/9780470559277.ch090201. PubMed DOI PMC

Chang G.H., Lay A.J., Ting K.K., Zhao Y., Coleman P.R., Powter E.E., Formaz-Preston A., Jolly C.J., Bower N.I., Hogan B.M., et al. Arhgap18: An endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions. Small GTPases. 2014;5 doi: 10.4161/21541248.2014.975002. PubMed DOI PMC

Maeda M., Hasegawa H., Hyodo T., Ito S., Asano E., Yuang H., Funasaka K., Shimokata K., Hasegawa Y., Hamaguchi M., et al. ARHGAP18, a GTPase-activating protein for RhoA, controls cell shape, spreading and motility. Mol. Biol. Cell. 2011;22:3840–3852. doi: 10.1091/mbc.e11-04-0364. PubMed DOI PMC

Li X., Tao Y., Wang X., Wang T., Liu J. Advanced glycosylation end products (AGEs) controls proliferation, invasion and permeability through orchestrating ARHGAP18/RhoA pathway in human umbilical vein endothelial cells. Glycoconj. J. 2020;37:209–219. doi: 10.1007/s10719-020-09908-0. PubMed DOI

Porazinski S., Wang H., Asaoka Y., Behrndt M., Miyamoto T., Morita H., Hata S., Sasaki T., Krens S.F.G., Osada Y., et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. 2015;521:217–221. doi: 10.1038/nature14215. PubMed DOI PMC

Vautrin-Glabik A., Botia B., Kischel P., Ouadid-Ahidouch H., Rodat-Despoix L. IP3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. Biochim. Biophys. Acta - Mol. Cell Res. 2018;1865:945–958. doi: 10.1016/j.bbamcr.2018.04.002. PubMed DOI

Lovelace M.D., Powter E.E., Coleman P.R., Zhao Y., Parker A., Chang G.H., Lay A.J., Hunter J., McGrath A.P., Jormakka M., et al. The RhoGAP protein ARHGAP18/SENEX localizes to microtubules and regulates their stability in endothelial cells. Mol. Biol. Cell. 2017;28:1066–1078. doi: 10.1091/mbc.e16-05-0285. PubMed DOI PMC

Li Y., Ji S., Fu L., Jiang T., Wu D., Meng F. Over-expression of ARHGAP18 suppressed cell proliferation, migration, invasion and tumor growth in gastric cancer by restraining over-activation of MAPK signaling pathways. Onco. Targets. Ther. 2018;11:279–290. doi: 10.2147/OTT.S130255. PubMed DOI PMC

Humphries B., Wang Z., Li Y., Jhan J.R., Jiang Y., Yang C. ARHGAP18 downregulation by miR-200b suppresses metastasis of triple-negative breast cancer by enhancing activation of RhoA. Cancer Res. 2017;77:4051–4064. doi: 10.1158/0008-5472.CAN-16-3141. PubMed DOI

Aguilar-Rojas A., Maya-Núñez G., Huerta-Reyes M., Pérez-Solis M.A., Silva-García R., Guillén N., Olivo-Marin J.C. Activation of human gonadotropin-releasing hormone receptor promotes down regulation of ARHGAP18 and regulates the cell invasion of MDA-MB-231 cells. Mol. Cell. Endocrinol. 2018;460:94–103. doi: 10.1016/j.mce.2017.07.009. PubMed DOI

Aleskandarany M.A., Sonbul S., Surridge R., Mukherjee A., Caldas C., Diez-Rodriguez M., Ashankyty I., Albrahim K.I., Elmouna A.M., Aneja R., et al. Rho-GTPase activating-protein 18: A biomarker associated with good prognosis in invasive breast cancer. Br. J. Cancer. 2017;117:1176–1184. doi: 10.1038/bjc.2017.261. PubMed DOI PMC

Coleman P.R., Hahn C.N., Grimshaw M., Lu Y., Li X., Brautigan P.J., Beck K., Stocker R., Vadas M.A., Gamble J.R. Stress-induced premature senescence mediated by a novel gene, SENEX, results in an anti-inflammatory phenotype in endothelial cells. Blood. 2010;116:4016–4024. doi: 10.1182/blood-2009-11-252700. PubMed DOI

Lay A.J., Coleman P.R., Formaz-Preston A., Ka Ting K., Roediger B., Weninger W., Schwartz M.A., Vadas M.A., Gamble J.R. ARHGAP18: A flow-responsive gene that regulates endothelial cell alignment and protects against atherosclerosis. J. Am. Heart Assoc. 2019;8 doi: 10.1161/JAHA.118.010057. PubMed DOI PMC

Coleman P.R., Lay A.J., Ting K.K., Zhao Y., Li J., Jarrah S., Vadas M.A., Gamble J.R. YAP and the RhoC regulator ARHGAP18, are required to mediate flow-dependent endothelial cell alignment. Cell Commun. Signal. 2020;18 doi: 10.1186/s12964-020-0511-7. PubMed DOI PMC

Cibrián Uhalte E., Kirchner M., Hellwig N., Allen J.J., Donat S., Shokat K.M., Selbach M., Abdelilah-Seyfried S. In Vivo Conditions to Identify Prkci Phosphorylation Targets Using the Analog-Sensitive Kinase Method in Zebrafish. PLoS ONE. 2012;7:e40000. doi: 10.1371/journal.pone.0040000. PubMed DOI PMC

Ge S.X., Jung D., Jung D., Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC

Shibata H., Oishi K., Yamagiwa A., Matsumoto M., Mukai H., Ono Y. PKNbeta interacts with the SH3 Domains of Graf and a Novel Graf Related Protein, Graf 2, Which Are GTPase Activating Proteins for Rho. J. Biochem. 2001;31:23–31. doi: 10.1093/oxfordjournals.jbchem.a002958. PubMed DOI

Collazos A., Michael N., Whelan R.D.H., Kelly G., Mellor H., Pang L.C.H., Totty N., Parker P.J. Site recognition and substrate screens for PKN family proteins. Biochem. J. 2011;438:535–543. doi: 10.1042/BJ20110521. PubMed DOI

Browne C.M., Jiang B., Ficarro S.B., Doctor Z.M., Johnson J.L., Card J.D., Sivakumaren S.C., Alexander W.M., Yaron T.M., Murphy C.J., et al. A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. J. Am. Chem. Soc. 2019;141:191–203. doi: 10.1021/jacs.8b07911. PubMed DOI PMC

Linardopoulou E.V., Parghi S.S., Friedman C., Osborn G.E., Parkhurst S.M., Trask B.J. Human Subtelomeric WASH Genes Encode a New Subclass of the WASP Family. PLoS Genet. 2007;3:e237. doi: 10.1371/journal.pgen.0030237. PubMed DOI PMC

Yang C., Pring M., Wear M.A., Huang M., Cooper J.A., Svitkina T.M., Zigmond S.H. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev. Cell. 2005;9:209–221. doi: 10.1016/j.devcel.2005.06.008. PubMed DOI PMC

Liang Y., Niederstrasser H., Edwards M., Jackson C.E., Cooper J.A. Distinct roles for CARMIL isoforms in cell migration. Mol. Biol. Cell. 2009;20:5290–5305. doi: 10.1091/mbc.e08-10-1071. PubMed DOI PMC

Mori K., Amano M., Takefuji M., Kato K., Morita Y., Nishioka T., Matsuura Y., Murohara T., Kaibuchi K. Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP. J. Biol. Chem. 2009;284:5067–5076. doi: 10.1074/jbc.M806853200. PubMed DOI

Jiang W., Betson M., Mulloy R., Foster R., Lévay M., Ligeti E., Settleman J. P190A RhoGAP is a glycogen synthase kinase-3-β substrate required for polarized cell migration. J. Biol. Chem. 2008;283:20978–20988. doi: 10.1074/jbc.M802588200. PubMed DOI PMC

Minoshima Y., Kawashima T., Hirose K., Tonozuka Y., Kawajiri A., Bao Y.C., Deng X., Tatsuka M., Narumiya S., May W.S., et al. Phosphorylation by Aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell. 2003;4:549–560. doi: 10.1016/S1534-5807(03)00089-3. PubMed DOI

Luo W., Janoštiak R., Tolde O., Ryzhova L.M., Koudelková L., Dibus M., Brábek J., Hanks S.K., Rosel D. ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility. J. Cell Sci. 2017;130:2382–2393. doi: 10.1242/jcs.197434. PubMed DOI PMC

Lusis A.J. Atherosclerosis. Nature. 2000;407:233–241. doi: 10.1038/35025203. PubMed DOI PMC

Hägg S., Skogsberg J., Lundström J., Noori P., Nilsson R., Zhong H., Maleki S., Shang M.M., Brinne B.R., Bradshaw M., et al. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) study. PLoS Genet. 2009;5:e1000754. doi: 10.1371/journal.pgen.1000754. PubMed DOI PMC

Zhang C.J., Zhu N., Liu Z., Shi Z., Long J., Zu X.Y., Tang Z.W., Hu Z.Y., Liao D.F., Qin L. Wnt5a/Ror2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2020;1865:158547. doi: 10.1016/j.bbalip.2019.158547. PubMed DOI

García-Mata R., Wennerberg K., Arthur W.T., Noren N.K., Ellerbroek S.M., Burridge K. Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol. 2006;406:425–437. doi: 10.1016/S0076-6879(06)06031-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...