Trend analysis of global usage of digital soil mapping models in the prediction of potentially toxic elements in soil/sediments: a bibliometric review

. 2021 May ; 43 (5) : 1715-1739. [epub] 20201022

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33094391
Odkazy

PubMed 33094391
DOI 10.1007/s10653-020-00742-9
PII: 10.1007/s10653-020-00742-9
Knihovny.cz E-zdroje

The rising and continuous pollution of the soil from anthropogenic activities is of great concern. Owing to this concern, the advent of digital soil mapping (DSM) has been a tool that soil scientists use in this era to predict the potentially toxic element (PTE) content in the soil. The purpose of this paper was to conduct a review of articles, summarize and analyse the spatial prediction of potentially toxic elements, determine and compare the models' usage as well as their performance over time. Through Scopus, the Web of Science and Google Scholar, we collected papers between the year 2001 and the first quarter of 2019, which were tailored towards the spatial PTE prediction using DSM approaches. The results indicated that soil pollution emanates from diverse sources. However, it provided reasons why the authors investigate a piece of land or area, highlighting the uncertainties in mapping, number of publications per journal and continental efforts to research as well as published on trending issues regarding DSM. This paper reveals the complementary role machine learning algorithms and the geostatistical models play in DSM. Nevertheless, geostatistical approaches remain the most preferred model compared to machine learning algorithms.

Zobrazit více v PubMed

Adagunodo, T. A., Sunmonu, L. A., & Emetere, M. E. (2018). Heavy metals’ data in soils for agricultural activities. Data in Brief, 18, 1847–1855.

Alloway, B. (2013). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Berlin: Springer.

Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., & Nauss, T. (2015). Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro Tanzania. Spatial Statistics, 14, 91–113.

Armah, F. A., Quansah, R., & Luginaah, I. (2014). A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. International Scholarly Research Notices, 2014, 1–37.

Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., et al. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. In Advances in Agronomy (Vol. 125, pp. 93–134).

Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. Journal of Environmental Quality, 34(1), 49–63.

Beguin, J., Fuglstad, G. A., Mansuy, N., & Paré, D. (2017). Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. Geoderma, 306, 195–205.

Behrens, T., Schmidt, K., MacMillan, R. A., & Viscarra Rossel, R. A. (2018). Multi-scale digital soil mapping with deep learning. Scientific Reports. https://doi.org/10.1038/s41598-018-33516-6 DOI

Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., et al. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35.

Cachada, A., Rocha-Santos, T. A. P., & Duarte, A. C. (2017). Soil and pollution: An introduction to the main issues. Soil Pollution: From Monitoring to Remediation. https://doi.org/10.1016/B978-0-12-849873-6.00001-7 .

Chen, T., Liu, X., Li, X., Zhao, K., Zhang, J., Xu, J., et al. (2009). Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou China. Environmental Pollution, 157(3), 1003–1010.

Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153.

Chen, H., Zheng, C., Tu, C., & Zhu, Y. G. (1999). Heavy metal pollution in soils in China: Status and countermeasures. Ambio, 28(2), 130–134.

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

Cressie, N., & Kornak, J. (2003). Spatial statistics in the presence of location error with an application to remote sensing of the environment. Statistical Science, 18(4), 436–456.

EEA. (2014). Progress in Management of Contaminated Sites (CSI 015/LSI 003).

FAO and ITPS. (2015). Status of the World’s Soil Resources. Intergovernmental Technical Panel on Soils, 123–126.

FAO and ITPS. (2018). Status of the World’s Soil Resources. Intergovernmental Technical Panel on Soils, 123–126.

Finke, P. A. (2006). Chapter 39 quality Assessment of Digital Soil Maps: Producers and Users Perspectives. Developments in Soil Science. https://doi.org/10.1016/S0166-2481(06)31039-2 DOI

GAO, U. (2015). United States Government Accountability Office. (2015). Trends in Federal Funding and Cleanup of EPA’s Nonfederal National Priorities List Sites (GAO Publication No. GAO-15-812). Washington, DC: U.S. Government Printing Office.

Gasch, C. K., Hengl, T., Gräler, B., Meyer, H., Magney, T. S., & Brown, D. J. (2015). Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T: The Cook Agronomy Farm data set. Spatial Statistics, 14, 70–90.

Gonzalez, C., Gonzalez-Macias, G., Macias, M., Schifter, I., Lluch-Cota, D. B., Endez-Rodriguez, M., et al. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of salina cruz bay, m ´ exico. Environmental Monitoring and Assessment, 118(1–3), 211–230.

Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152(3–4), 195–207.

Gunson, A. J., Gunson, A. J., & Jian, Y. (2001). Artisanal Mining in The People’s Republic of China Communities and Small-scale of Mines (CASM) under the World Bank View project Artisanal Mining in The People’s Republic of China. researchgate.net.

Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, 265, 62–77.

ISI. (2020). Developing Countries - ISI. https://www.isi-web.org/index.php/capacity-building/developing-countries .

Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R., & Whisler, F. D. (2005). Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society, 69(4), 1338–1350.

Iñigo, V., Andrades, M., Alonso-Martirena, J. I., Marín, A., & Jiménez-Ballesta, R. (2011). Multivariate statistical and GIS-based approach for the identification of Mn and Ni concentrations and spatial variability in soils of a humid mediterranean environment: La Rioja, Spain. Water, Air, and Soil Pollution, 222(1–4), 271–284.

Iñigo, V., Andrades, M. S., Alonso-Martirena, J. I., Marín, A., & Jiménez-Ballesta, R. (2014). Background values and distribution trends of Cu and Zn in soils of humid Mediterranean environment. Chemistry and Ecology, 30(3), 252–266.

Jiang, Z. (2018). A survey on spatial prediction methods. IEEE Transactions on Knowledge and Data Engineering., 31, 164.

Jiménez-Ballesta, R., García-Navarro, F. J., Bravo, S., Amorós, J. A., Pérez-de-los-Reyes, C., & Mejías, M. (2017). Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain). Environmental Geochemistry and Health, 39(5), 1159–1177.

Juel, A., Groom, G. B., Svenning, J. C., & Ejrnæs, R. (2015). Spatial application of Random Forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data. International Journal of Applied Earth Observation and Geoinformation, 42, 106–114.

Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126(2), 225–233.

Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Trace Elements from Soil to Human. https://doi.org/10.1007/978-3-540-32714-1 DOI

Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing China. Environmental Pollution, 152(3), 686–692.

Kuo, S., Heilman, P. E., & Baker, A. S. (1983). Distribution and forms of copper, zinc, cadmium, iron, and manganese in soils near a copper smelter. Soil Science., 135, 101.

Lagacherie, P., & McBratney, A. B. (2006). Chapter 1 spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. Developments in Soil Science. https://doi.org/10.1016/S0166-2481(06)31001-X DOI

Lark, R. M. (1995). A reappraisal of unsupervised classification, II: Optimal adjustment of the map legend and a neighbourhood approach for mapping legend units. International Journal of Remote Sensing, 16(8), 1445–1460.

Lasat, M. M. (1999). Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(1), 1–1.

Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., et al. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225, 681–690.

Liu, W. X., Li, X. D., Shen, Z. G., Wang, D. C., Wai, O. W. H., & Li, Y. S. (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environmental Pollution, 121(3), 377–388.

Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y. G. (2009a). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90(8), 2524–2530.

Luo, Y., Wu, L., Liu, L., Han, C., & Li, Z. (2009b). Heavy metal contamination and remediation in Asian agricultural land. National Institutes for Agro-Environmental Sciences (Vol. 1).

Marín, A., Andrades, M., Iñigo, V., & Jiménez-Ballesta, R. (2016). Lead and Cadmium in Soils of La Rioja Vineyards Spain. Land Degradation and Development, 27(4), 1286–1294.

McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

Mielke, H. W., & Reagan, P. L. (1998). Soil is an important pathway of human lead exposure. Environmental Health Perspectives., 106, 217.

Minasny, B., & McBratney, A. B. (2016). Digital soil mapping: A brief history and some lessons. Geoderma, 264, 301–311.

Mirsal, I. (2008). Soil pollution: Origin monitoring & remediation (p. 310). Berlin: Springer.

Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1–3), 205–219.

Ogundele, L. T., Owoade, O. K., Hopke, P. K., & Olise, F. S. (2017). Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria. Environmental Research, 156, 320–325.

Oldeman, L. (1991). World map on status of human - induced soil degradation. Wageningen: Ref.

Padarian, J., Minasny, B., & McBratney, A. B. (2019). Using deep learning for digital soil mapping. Soil, 5(1), 79–89.

Pontius, R. G., & Cheuk, M. L. (2006). A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. International Journal of Geographical Information Science, 20(1), 1–30.

Rhee, J., & Im, J. (2017). Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agricultural and Forest Meteorology, 237–238, 105–122.

Rossiter, D. G. (2018). Past, present & future of information technology in pedometrics. Geoderma., 324, 131.

Scragg, A. (2006). Environmental Biotechnology, Oxford University Press, Oxford, UK, 2nd edition, 2006. Oxford: Oxford University Press.

Scull, P., Franklin, J., Chadwick, O. A., & McArthur, D. (2003). Predictive soil mapping: A review. Progress in Physical Geography, 27(2), 171–197.

Seaward, M. R. D, Richardson, D. H. S. (1990). Atmospheric sources of metal pollution and effects on vegetation. Heavy metal tolerance in plants evolutionary aspects, 75–92.

Srivastava, P. K., Islam, T., Gupta, M., Petropoulos, G., & Dai, Q. (2015). WRF dynamical downscaling and bias correction schemes for NCEP estimated hydro-meteorological variables. Water Resources Management, 29(7), 2267–2284.

Swartjes, F. A., & Siciliano, S. (2012). Dealing with contaminated sites: from theory towards practical application. Soil Science Society of America Journal, 76(2), 748–748.

Thevenon, F., Guédron, S., Chiaradia, M., Loizeau, J. L., & Poté, J. (2011). (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes. Quaternary Science Reviews, 30(1–2), 224–233.

Tóth, G., Hermann, T., Szatmári, G., & Pásztor, L. (2016). Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of the Total Environment, 565, 1054–1062.

van Zijl, G. (2019). Digital soil mapping approaches to address real world problems in southern Africa. Geoderma, 337, 1301–1308.

Veronesi, F., & Schillaci, C. (2019). Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecological Indicators, 101, 1032–1044.

WHO (2019). International Lead Poisoning Prevention Week of Action (October 2015): Examples of planned activities by governments, non-governmental organizations and others.

Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists, 2nd Edition (Statistics in Practice). Chichester: Wiley.

Woodcock, C. E., & Gopal, S. (2000). Fuzzy set theory and thematic maps: Accuracy assessment and area estimation. International Journal of Geographical Information Science, 14(2), 153–172.

Wuana, R. A., & Okieimen, F. E. (2014). Heavy metals in contaminated soils: A review of sources, chemistry, risks, and best available strategies for remediation. Heavy Metal Contamination of Water and Soil Analysis, Assessment, and Remediation Strategies. https://doi.org/10.1201/b16566-3 DOI

Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment., 642, 690.

Zhang, G. L., Liu, F., & Song, X. D. (2017). Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture., 16, 2871.

Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41(7), 820–831.

Zhang, X., Zhang, X., & Zhong, T. (2014). Spatial distribution and accumulation of heavy metal in arable land soil of China. Huan jing ke xue, 35, 692.

Zhu, A. X., Hudson, B., Burt, J., Lubich, K., & Simonson, D. (2001). Soil Mapping using GIS, expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5), 1463–1472.

Zhu, A.-X., Lu, G., Liu, J., Qin, C.-Z., & Zhou, C. (2018). Spatial prediction based on Third Law of Geography. Annals of GIS, 24(4), 225–240.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...