Copper detoxification machinery of the brain-eating amoeba Naegleria fowleri involves copper-translocating ATPase and the antioxidant system
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33096396
PubMed Central
PMC7578549
DOI
10.1016/j.ijpddr.2020.10.001
PII: S2211-3207(20)30032-4
Knihovny.cz E-zdroje
- Klíčová slova
- Copper, Copper-translocating ATPase, Hemerythrin, Ionophores, Naegleria fowleri, Oxidative stress,
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- Amoeba MeSH
- antioxidancia fyziologie MeSH
- lidé MeSH
- měď metabolismus MeSH
- mozek MeSH
- Naegleria fowleri * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- antioxidancia MeSH
- měď MeSH
Copper is a trace metal that is necessary for all organisms but toxic when present in excess. Different mechanisms to avoid copper toxicity have been reported to date in pathogenic organisms such as Cryptococcus neoformans and Candida albicans. However, little if anything is known about pathogenic protozoans despite their importance in human and veterinary medicine. Naegleria fowleri is a free-living amoeba that occurs naturally in warm fresh water and can cause a rapid and deadly brain infection called primary amoebic meningoencephalitis (PAM). Here, we describe the mechanisms employed by N. fowleri to tolerate high copper concentrations, which include various strategies such as copper efflux mediated by a copper-translocating ATPase and upregulation of the expression of antioxidant enzymes and obscure hemerythrin-like and protoglobin-like proteins. The combination of different mechanisms efficiently protects the cell and ensures its high copper tolerance, which can be advantageous both in the natural environment and in the host. Nevertheless, we demonstrate that copper ionophores are potent antiamoebic agents; thus, copper metabolism may be considered a therapeutic target.
Zobrazit více v PubMed
Adlard P.A., Cherny R.A., Finkelstein D.I., Gautier E., Robb E., Cortes M., Volitakis I., Liu X., Smith J.P., Perez K., Laughton K., Li Q., Charman S.A., Nicolazzo J.A., Wilkins S., Deleva K., Lynch T., Kok G., Ritchie C.W., Tanzi R.E., Cappai R., Masters C.L., Barnham K.J., Bush A.I. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aß. Neuron. 2008;59:43–55. PubMed
Ahmed A.M., Lyautey E., Bonnineau C., Dabrin A., Pesce S. Environmental concentrations of copper, alone or in mixture with arsenic, can impact river sediment microbial community structure and functions. Front. Microbiol. 2018;9:1–13. PubMed PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Alvarez-Carreño C., Alva V., Becerra A., Lazcano A. Structure, function and evolution of the hemerythrin-like domain superfamily. Protein Sci. 2018;27:848–860. PubMed PMC
Arbon D., Ženíšková K., Mach J., Grechnikova M., Malych R., Talacko P., Sutak R. Adaptive iron utilization compensates for the lack of an inducible uptake system in Naegleria fowleri and represents a potential target for therapeutic intervention. PLoS Negl. Trop. Dis. 2020;14:1–25. PubMed PMC
Arnér E.S.J., Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000;267:6102–6109. PubMed
Aurrecoechea C., Barreto A., Brestelli J., Brunk B.P., Caler E.V., Fischer S., Gajria B., Gao X., Gingle A., Grant G., Harb O.S., Heiges M., Iodice J., Kissinger J.C., Kraemer E.T., Li W., Nayak V., Pennington C., Pinney D.F., Pitts B., Roos D.S., Srinivasamoorthy G., Stoeckert C.J., Treatman C., Wang H. AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and microsporidia species. Nucleic Acids Res. 2011;39:612–619. PubMed PMC
Bailly X., Vanin S., Chabasse C., Mizuguchi K., Vinogradov S.N. A phylogenomic profile of hemerythrins, the nonheme diiron binding respiratory proteins. BMC Evol. Biol. 2008;8:1–11. PubMed PMC
Bellini N.K., Santos T.M., da Silva M.T.A., Thiemann O.H. The therapeutic strategies against Naegleria fowleri. Exp. Parasitol. 2018;187:1–11. PubMed
Bernsel A., Viklund H., Falk J., Lindahl E., Von Heijne G., Elofsson A. Prediction of membrane-protein topology from first principles. Proc. Natl. Acad. Sci. U. S. A. 2008;105:7177–7181. PubMed PMC
Biteau B., Labarre J., Toledano M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003;425:980–984. PubMed
Brancaccio D., Gallo A., Piccioli M., Novellino E., Ciofi-Baffoni S., Banci L. [4Fe-4S] cluster assembly in mitochondria and its impairment by copper. J. Am. Chem. Soc. 2017;139:719–730. PubMed
Capdevila M., Atrian S. Metallothionein protein evolution: a miniassay. J. Biol. Inorg. Chem. 2011;16:977–989. PubMed
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014;13:2513–2526. PubMed PMC
Cunha I., Mangas-Ramirez E., Guilhermino L. Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus) Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007;145:648–657. PubMed
Ding C., Festa R.A., Chen Y.L., Espart A., Palacios Ò., Espín J., Capdevila M., Atrian S., Heitman J., Thiele D.J. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe. 2013;13:265–276. PubMed PMC
Ding C., Yin J., Tovar E.M.M., Fitzpatrick D.A., Higgins D.G., Thiele D.J. The copper regulon of the human fungal pathogen Cryptococcus neoformans H99. Mol. Microbiol. 2011;81:1560–1576. PubMed PMC
Ding W.Q., Lind S.E. Metal ionophores - an emerging class of anticancer drugs. IUBMB Life. 2009;61:1013–1018. PubMed
Dobson L., Reményi I., Tusnády G.E. CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res. 2015;43:W408–W412. PubMed PMC
Eyice Ö., Myronova N., Pol A., Carrión O., Todd J.D., Smith T.J., Gurman S.J., Cuthbertson A., Mazard S., Mennink-Kersten M.A.S.H., Bugg T.D.H., Andersson K.K., Johnston A.W.B., Op Den Camp H.J.M., Schäfer H. Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME J. 2018;12:145–160. PubMed PMC
Fernando M.R., Nanri H., Yoshitake S., Nagata‐Kuno K., Minakami S. Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur. J. Biochem. 1992;209:917–922. PubMed
Festa R.A., Helsel M.E., Franz K.J., Thiele D.J. Exploiting innate immune cell activation of a copper-dependent antimicrobial agent during infection. Chem. Biol. 2014;21:977–987. PubMed PMC
Findlay V.J., Townsend D.M., Morris T.E., Fraser J.P., He L., Tew K.D. A novel role for human sulfiredoxin in the reversal of glutathionylation. Canc. Res. 2006;66:6800–6806. PubMed PMC
Flemming C.A., Trevors J.T. Copper toxicity and chemistry in the environment: a review. Water. Air. Soil Pollut. 1989;44:143–158.
Fulton C. Axenic cultivation of Naegleria gruberi. Requirement for methionine. Exp. Cell Res. 1974;88:365–370. PubMed
Fung D.K.C., Lau W.Y., Chan W.T., Yan A. Copper efflux is induced during anaerobic amino acid limitation in escherichia coli to protect iron-sulfur cluster enzymes and biogenesis. J. Bacteriol. 2013;195:4556–4568. PubMed PMC
Gaetke L.M., Chow C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003;189:147–163. PubMed
Garcia-Santamarina S., Uzarska M.A., Festa R.A., Lill R., Thiele D.J. Cryptococcus neoformans iron-sulfur protein biogenesis machinery is a novel layer of protection against Cu stress. mBio. 2017;8:1–18. PubMed PMC
Gietz R.D., Schiestl R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007;2:38–41. PubMed
Harwood M.D., Russell M.R., Neuhoff S., Warhurst G., Rostami-Hodjegan A. Lost in centrifugation: accounting for transporter protein losses in quantitative targeted absolute proteomics. Drug Metab. Dispos. 2014;42:1766–1772. PubMed
Helsel M.E., White E.J., Razvi S.Z.A., Alies B., Franz K.J. Chemical and functional properties of metal chelators that mobilize copper to elicit fungal killing of Cryptococcus neoformans. Metallomics. 2017;9:69–81. PubMed PMC
Herman E.K., Greninger A., van der Giezen M., Ginger M.L., Ramirez-Macias I., Miller H.C., Morgan M.J., Tsaousis A.D., Velle K., Vargová R., Rodrigo Najle S., MacIntyre G., Muller N., Wittwer M., Zysset-Burri D.C., Elias M., Slamovits C., Weirauch M., Fritz-Laylin L., Marciano-Cabral F., Puzon G.J., Walsh T., Chiu C., Dacks J.B. bioRxiv; 2020. A comparative ‘omics approach to candidate pathogenicity factor discovery in the brain-eating amoeba Naegleria fowleri. 2020.01.16.908186.
Hodgkinson V., Petris M.J. Copper homeostasis at the host-pathogen interface. J. Biol. Chem. 2012;287:13549–13555. PubMed PMC
Holmgren A. Thioredoxin. Annu. Rev. Biochem. 1985;54:237–271. PubMed
Holmgren A., Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem. Biophys. Res. Commun. 2010;396:120–124. PubMed
Isah M.B., Goldring J.P.D., Coetzer T.H.T. Expression and copper binding properties of the N-terminal domain of copper P-type ATPases of African trypanosomes. Mol. Biochem. Parasitol. 2020;235:111245. PubMed
Käll L., Krogh A., Sonnhammer E.L.L. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 2004;338:1027–1036. PubMed
Kühlbrandt W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 2004;5:282–295. PubMed
Kung C.C.S., Huang W.N., Huang Y.C., Yeh K.C. Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. Proteomics. 2006;6:2746–2758. PubMed
Letelier M.E., Martínez M., González-Lira V., Faúndez M., Aracena-Parks P. Inhibition of cytosolic glutathione S-transferase activity from rat liver by copper. Chem. Biol. Interact. 2006;164:39–48. PubMed
Lutsenko S., LeShane E.S., Shinde U. Biochemical basis of regulation of human copper-transporting ATPases. Arch. Biochem. Biophys. 2007;463:134–148. PubMed PMC
Mach J., Bíla J., Ženíšková K., Arbon D., Malych R., Glavanakovová M., Nývltová E., Sutak R. Iron economy in Naegleria gruberi reflects its metabolic flexibility. Int. J. Parasitol. 2018;48:719–727. PubMed
Maciver S.K., Piñero J.E., Lorenzo-Morales J. Is Naegleria fowleri an emerging parasite? Trends Parasitol. 2020;36:19–28. PubMed
Mackie J., Szabo E.K., Urgast D.S., Ballou E.R., Childers D.S., MacCallum D.M., Feldmann J., Brown A.J.P. Host-imposed copper poisoning impacts fungal micronutrient acquisition during systemic Candida albicans infections. PLoS One. 2016;11:1–18. PubMed PMC
Macomber L., Imlay J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. U. S. A. 2009;106:8344–8349. PubMed PMC
Meade J.C. P-type transport ATPases in Leishmania and Trypanosoma. Parasite. 2019;26:69. PubMed PMC
Moller J.A., Juul B., Maire M. le. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim. Biophys. Acta. 1996;1286:1–51. PubMed
Mull B.J., Narayanan J., Hill V.R. Improved method for the detection and quantification of Naegleria fowleri in water and sediment using immunomagnetic separation and real-time PCR. J. Parasitol. Res. 2013;2013:608367. PubMed PMC
Ogawa K., Sun J., Taketani S., Nakajima O., Nishitani C., Sassa S., Hayashi N., Yamamoto M., Shibahara S., Fujita H., Igarashi K. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 2001;20:2835–2843. PubMed PMC
Pearce D.A., Sherman F. Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae. J. Bacteriol. 1999;181:4774–4779. PubMed PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz Ş., Tiwary S., Cox J., Audain E., Walzer M., Jarnuczak A.F., Ternent T., Brazma A., Vizcaíno J.A. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC
Pesce A., Bolognesi M., Nardini M. vol. 63. 2013. pp. 79–96. (Protoglobin: Structure and Ligand-Binding Properties). PubMed
Rainsford K.D., Milanino R., Sorenson J.R.J., Velo G.P., editors. Copper and Zinc in Inflammatory and Degenerative Diseases. Springer Science+Business Media; Dordrecht: 1998.
Rasoloson D., Shi L., Chong C.R., Kafsack B.F., Sullivan D.J. Copper pathways in Plasmodium falciparum infected erythrocytes indicate an efflux role for the copper P-ATPase. Biochem. J. 2004;381:803–811. PubMed PMC
Reeder N.L., Xu J., Youngquist R.S., Schwartz J.R., Rust R.C., Saunders C.W. The antifungal mechanism of action of zinc pyrithione. Br. J. Dermatol. 2011;165:9–12. PubMed
Rhee J.S., Lee Y.M., Hwang D.S., Lee K.W., Kim I.C., Shin K.H., Raisuddin S., Lee J.S. Molecular cloning and characterization of omega class glutathione S-transferase (GST-O) from the polychaete Neanthes succinea: biochemical comparison with theta class glutathione S-transferase (GST-T) Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007;146:471–477. PubMed
Salazar-Medina A.J., García-Rico L., García-Orozco K.D., Valenzuela-Soto E., Contreras-Vergara C.A., Arreola R., Arvizu-Flores A., Sotelo-Mundo R.R. Inhibition by Cu2+ and Cd2+ of a Mu-class glutathione S-transferase from shrimp Litopenaeus vannamei. J. Biochem. Mol. Toxicol. 2010;24:218–222. PubMed
Sheldon J.R., Skaar E.P. Metals as phagocyte antimicrobial effectors. Curr. Opin. Immunol. 2019;60:1–9. PubMed PMC
Shimizu T. Binding of cysteine thiolate to the Fe(III) heme complex is critical for the function of heme sensor proteins. J. Inorg. Biochem. 2012;108:171–177. PubMed
Siddiqui R., Ali I.K.M., Cope J.R., Khan N.A. Biology and pathogenesis of Naegleria fowleri. Acta Trop. 2016;164:375–394. PubMed
Smith A.D., Logeman B.L., Thiele D.J. Copper acquisition and utilization in fungi. Annu. Rev. Microbiol. 2017:597–623. PubMed PMC
Söding J., Biegert A., Lupas A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33:244–248. PubMed PMC
Solioz M., Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci. 1996;21:237–241. PubMed
Song Y., Xu H., Chen W., Zhan P., Liu X. 8-Hydroxyquinoline: a privileged structure with broad-ranging pharmacological potentials. Med. Chem. Commun. 2015;6:61–74.
Sykora J.L., Keleti G., Martinez A.J. Occurrence and pathogenicity of Naegleria fowleri in artificially heated waters. Appl. Environ. Microbiol. 1983;45:974–979. PubMed PMC
Szczypka M.S., Zhu Z., Silar P., Thiele D.J. Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast. 1997;13:1423–1435. PubMed
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. PubMed
Vuilleumier S., Pagni M. The elusive roles of bacterial glutathione S-transferases: new lessons from genomes. Appl. Microbiol. Biotechnol. 2002;58:138–146. PubMed
Weissman Z., Berdicevsky I., Cavari B.Z., Kornitzer D. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc. Natl. Acad. Sci. U. S. A. 2000;97:3520–3525. PubMed PMC
White C., Lee J., Kambe T., Fritsche K., Petris M.J. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 2009;284:33949–33956. PubMed PMC
Wiemann P., Perevitsky A., Lim F.Y., Shadkchan Y., Knox B.P., Landero Figueora J.A., Choera T., Niu M., Steinberger A.J., Wüthrich M., Idol R.A., Klein B.S., Dinauer M.C., Huttenlocher A., Osherov N., Keller N.P. Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep. 2017;19:1008–1021. PubMed PMC
Wu Z., Fernandez-Lima F.A., Russell D.H. Amino acid influence on copper binding to peptides: cysteine versus arginine. J. Am. Soc. Mass Spectrom. 2010;21:522–533. PubMed
Yang X., Cai P., Liu Q., Wu J., Yin Y., Wang X., Kong L. Novel 8-hydroxyquinoline derivatives targeting β-amyloid aggregation, metal chelation and oxidative stress against Alzheimer's disease. Bioorganic Med. Chem. 2018;26:3191–3201. PubMed
Yuan D.S., Dancis A., Klausner R.D. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J. Biol. Chem. 1997;272:25787–25793. PubMed
Zhang L., Guarente L. Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J. 1995;14:313–340. PubMed PMC
Copper Metabolism in Naegleria gruberi and Its Deadly Relative Naegleria fowleri