Drug Mimicry: Promiscuous Receptors PXR and AhR, and Microbial Metabolite Interactions in the Intestine
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 CA222469
NCI NIH HHS - United States
R01 ES030197
NIEHS NIH HHS - United States
PubMed
33097284
PubMed Central
PMC7669654
DOI
10.1016/j.tips.2020.09.013
PII: S0165-6147(20)30220-0
Knihovny.cz E-zdroje
- Klíčová slova
- biomimicry, chemical space, disease, drugs, metabolites, receptors,
- MeSH
- léčivé přípravky * MeSH
- lidé MeSH
- objevování léků MeSH
- pregnanový X receptor * MeSH
- receptory aromatických uhlovodíků * MeSH
- steroidní receptory * MeSH
- střeva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- léčivé přípravky * MeSH
- pregnanový X receptor * MeSH
- receptory aromatických uhlovodíků * MeSH
- steroidní receptory * MeSH
Significant attrition limits drug discovery. The available chemical entities present with drug-like features contribute to this limitation. Using specific examples of promiscuous receptor-ligand interactions, a case is made for expanding the chemical space for drug-like molecules. These ligand-receptor interactions are poor candidates for the drug discovery process. However, provided herein are specific examples of ligand-receptor or transcription-factor interactions, namely, the pregnane X receptor (PXR) and the aryl hydrocarbon receptor (AhR), and itsinteractions with microbial metabolites. Discrete examples of microbial metabolite mimicry are shown to yield more potent and non-toxic therapeutic leads for pathophysiological conditions regulated by PXR and AhR. These examples underscore the opinion that microbial metabolite mimicry of promiscuous ligand-receptor interactions is warranted, and will likely expand the existing chemical space of drugs.
Zobrazit více v PubMed
Keah HH, Hearn MT. A molecular recognition paradigm: promiscuity associated with the ligand-receptor interactions of the activin members of the TGF-beta superfamily. J Mol Recognit. 2005;18(5):385–403. Epub 2005/06/11. doi: 10.1002/jmr.715. PubMed PMID: 15948132. PubMed DOI
Ekins S, Kortagere S, Iyer M, Reschly EJ, Lill MA, Redinbo MR, Krasowski MD. Challenges Predicting Ligand-Receptor Interactions of Promiscuous Proteins: The Nuclear Receptor PXR. PLOS Computational Biology. 2009;5(12):e1000594. doi: 10.1371/journal.pcbi.1000594. PubMed DOI PMC
Giani Tagliabue S, Faber SC, Motta S, Denison MS, Bonati L. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Scientific Reports. 2019;9(1):10693. doi: 10.1038/s41598-019-47138-z. PubMed DOI PMC
Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334(1-2):3–13. Epub 2010/07/10. doi: 10.1016/j.mce.2010.06.018. PubMed PMID: 20615454; PMCID: PMC3010294. PubMed DOI PMC
Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual review of pharmacology and toxicology. 2003;43:309–34. doi: 10.1146/annurev.pharmtox.43.100901.135828. PubMed PMID: 12540743. PubMed DOI
Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nature reviews Immunology. 2019;19(3):184–97. doi: 10.1038/s41577-019-0125-8. PubMed PMID: 30718831. PubMed DOI
Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nature reviews Cancer. 2014;14(12):801–14. doi: 10.1038/nrc3846. PubMed PMID: 25568920; PMCID: 4401080. PubMed DOI PMC
Metidji A, Omenetti S, Crotta S, Li Y, Nye E, Ross E, Li V, Maradana MR, Schiering C, Stockinger B. The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity. Immunity. 2018;49(2):353–62 e5. doi: 10.1016/j.immuni.2018.07.010. PubMed PMID: 30119997; PMCID: 6104739. PubMed DOI PMC
Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ, Xie W. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology. 2010;139(2):653–63. doi: 10.1053/j.gastro.2010.03.033. PubMed PMID: 20303349; PMCID: 2910786. PubMed DOI PMC
Peppers J, Paller AS, Maeda-Chubachi T, Wu S, Robbins K, Gallagher K, Kraus JE. A phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of atopic dermatitis. Journal of the American Academy of Dermatology. 2019;80(1):89–98 e3. doi: 10.1016/j.jaad.2018.06.047. PubMed PMID: 30554600. PubMed DOI
Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy - Challenges and Opportunities. Trends in pharmacological sciences. 2018;39(3):307–25. doi: 10.1016/j.tips.2017.11.007. PubMed PMID: 29254698. PubMed DOI
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Medicinal research reviews. 2020;40(3):972–1001. doi: 10.1002/med.21645. PubMed PMID: 31721255. PubMed DOI
Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications. Pharmacological research. 2015;91:15–28. doi: 10.1016/j.phrs.2014.10.009. PubMed PMID: 25447595. PubMed DOI
van den Bogaard EH, Bergboer JG, Vonk-Bergers M, van Vlijmen-Willems IM, Hato SV, van der Valk PG, Schroder JM, Joosten I, Zeeuwen PL, Schalkwijk J. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. The Journal of clinical investigation. 2013;123(2):917–27. doi: 10.1172/JCI65642. PubMed PMID: 23348739; PMCID: 3561798. PubMed DOI PMC
Robbins K, Bissonnette R, Maeda-Chubachi T, Ye L, Peppers J, Gallagher K, Kraus JE. Phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of plaque psoriasis. Journal of the American Academy of Dermatology. 2019;80(3):714–21. doi: 10.1016/j.jaad.2018.10.037. PubMed PMID: 30612986. PubMed DOI
Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, Brot L, Taleb S, Couturier-Maillard A, Nion-Larmurier I, Merabtene F, Seksik P, Bourrier A, Cosnes J, Ryffel B, Beaugerie L, Launay JM, Langella P, Xavier RJ, Sokol H. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nature medicine. 2016;22(6):598–605. Epub 2016/05/10. doi: 10.1038/nm.4102. PubMed PMID: 27158904; PMCID: PMC5087285. PubMed DOI PMC
Kim DJ, Venkataraman A, Jain PC, Wiesler EP, DeBlasio M, Klein J, Tu SS, Lee S, Medzhitov R, Iwasaki A. Vitamin B12 and folic acid alleviate symptoms of nutritional deficiency by antagonizing aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America. 2020. Epub 2020/06/24. doi: 10.1073/pnas.2006949117. PubMed PMID: 32571957. PubMed DOI PMC
Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. The Journal of clinical investigation. 1998;102(5):1016–23. doi: 10.1172/JCI3703. PubMed PMID: 9727070; PMCID: 508967. PubMed DOI PMC
Chai SC, Lin W, Li Y, Chen T. Drug discovery technologies to identify and characterize modulators of the pregnane X receptor and the constitutive androstane receptor. Drug discovery today. 2019;24(3):906–15. doi: 10.1016/j.drudis.2019.01.021. PubMed PMID: 30731240; PMCID: 6421094. PubMed DOI PMC
Chai SC, Wright WC, Chen T. Strategies for developing pregnane X receptor antagonists: Implications from metabolism to cancer. Medicinal research reviews. 2020;40(3):1061–83. doi: 10.1002/med.21648. PubMed PMID: 31782213; PMCID: 7166136. PubMed DOI PMC
Forman BM, Tzameli I, Choi HS, Chen J, Simha D, Seol W, Evans RM, Moore DD. Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature. 1998;395(6702):612–5. doi: 10.1038/26996. PubMed PMID: 9783588. PubMed DOI
Willson TM, Kliewer SA. PXR, CAR and drug metabolism. Nature reviews Drug discovery. 2002;1(4):259–66. doi: 10.1038/nrd753. PubMed PMID: 12120277. PubMed DOI
Banerjee M, Robbins D, Chen T. Targeting xenobiotic receptors PXR and CAR in human diseases. Drug discovery today. 2015;20(5):618–28. doi: 10.1016/j.drudis.2014.11.011. PubMed PMID: 25463033; PMCID: 4433851. PubMed DOI PMC
Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nature reviews Molecular cell biology. 2012;13(4):213–24. doi: 10.1038/nrm3312. PubMed PMID: 22414897; PMCID: 3597092. PubMed DOI PMC
Lin CY, Gustafsson JA. Targeting liver X receptors in cancer therapeutics. Nature reviews Cancer. 2015;15(4):216–24. doi: 10.1038/nrc3912. PubMed PMID: 25786697. PubMed DOI
Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nature reviews Drug discovery. 2014;13(6):433–44. doi: 10.1038/nrd4280. PubMed PMID: 24833295. PubMed DOI
Kim W, Kim BG, Lee JS, Lee CK, Yeon JE, Chang MS, Kim JH, Kim H, Yi S, Lee J, Cho JY, Kim SG, Lee JH, Kim YJ. Randomised clinical trial: the efficacy and safety of oltipraz, a liver X receptor alpha-inhibitory dithiolethione in patients with non-alcoholic fatty liver disease. Alimentary pharmacology & therapeutics. 2017;45(8):1073–83. doi: 10.1111/apt.13981. PubMed PMID: 28225186. PubMed DOI
Kirchgessner TG, Sleph P, Ostrowski J, Lupisella J, Ryan CS, Liu X, Fernando G, Grimm D, Shipkova P, Zhang R, Garcia R, Zhu J, He A, Malone H, Martin R, Behnia K, Wang Z, Barrett YC, Garmise RJ, Yuan L, Zhang J, Gandhi MD, Wastall P, Li T, Du S, Salvador L, Mohan R, Cantor GH, Kick E, Lee J, Frost RJ. Beneficial and Adverse Effects of an LXR Agonist on Human Lipid and Lipoprotein Metabolism and Circulating Neutrophils. Cell metabolism. 2016;24(2):223–33. doi: 10.1016/j.cmet.2016.07.016. PubMed PMID: 27508871. PubMed DOI
Czarnowicki T, Dohlman AB, Malik K, Antonini D, Bissonnette R, Chan TC, Zhou L, Wen HC, Estrada Y, Xu H, Bryson C, Shen J, Lala D, Ma'ayan A, McGeehan G, Gregg R, Guttman-Yassky E. Effect of short-term liver X receptor activation on epidermal barrier features in mild to moderate atopic dermatitis: A randomized controlled trial. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2018;120(6):631–40 e11. doi: 10.1016/j.anai.2018.03.013. PubMed PMID: 29567358. PubMed DOI
Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nature reviews Gastroenterology & hepatology. 2014;11(1):55–67. doi: 10.1038/nrgastro.2013.151. PubMed PMID: 23982684. PubMed DOI
Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe E, Dillon P, Pruzanski M, Shapiro D. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145(3):574–82 e1. doi: 10.1053/j.gastro.2013.05.042. PubMed PMID: 23727264. PubMed DOI
Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, Kowdley KV, McCullough A, Terrault N, Clark JM, Tonascia J, Brunt EM, Kleiner DE, Doo E, Network NCR. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65. doi: 10.1016/S0140-6736(14)61933-4. PubMed PMID: 25468160; PMCID: 4447192. PubMed DOI PMC
Kowdley KV, Vuppalanchi R, Levy C, Floreani A, Andreone P, LaRusso NF, Shrestha R, Trotter J, Goldberg D, Rushbrook S, Hirschfield GM, Schiano T, Jin Y, Pencek R, MacConell L, Shapiro D, Bowlus CL, Investigators AS. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. Journal of hepatology. 2020. doi: 10.1016/j.jhep.2020.02.033. PubMed PMID: 32165251. PubMed DOI PMC
Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, Drenth JP, Pockros PJ, Regula J, Beuers U, Trauner M, Jones DE, Floreani A, Hohenester S, Luketic V, Shiffman M, van Erpecum KJ, Vargas V, Vincent C, Hirschfield GM, Shah H, Hansen B, Lindor KD, Marschall HU, Kowdley KV, Hooshmand-Rad R, Marmon T, Sheeron S, Pencek R, MacConell L, Pruzanski M, Shapiro D, Group PS. A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. The New England journal of medicine. 2016;375(7):631–43. doi: 10.1056/NEJMoa1509840. PubMed PMID: 27532829. PubMed DOI
Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nature reviews Cancer. 2012;12(3):181–95. doi: 10.1038/nrc3214. PubMed PMID: 22318237; PMCID: 3322353. PubMed DOI PMC
Hiukka A, Maranghi M, Matikainen N, Taskinen MR. PPARalpha: an emerging therapeutic target in diabetic microvascular damage. Nature reviews Endocrinology. 2010;6(8):454–63. doi: 10.1038/nrendo.2010.89. PubMed PMID: 20567246. PubMed DOI
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nature reviews Immunology. 2016;16(6):341–52. doi: 10.1038/nri.2016.42. PubMed PMID: 27231050; PMCID: 5541232. PubMed DOI PMC
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294. Epub 2018/08/19. doi: 10.1038/s41467-018-05470-4. PubMed PMID: 30120222; PMCID: PMC6098093. PubMed DOI PMC
Vyhlidalova B, Krasulova K, Pecinkova P, Marcalikova A, Vrzal R, Zemankova L, Vanco J, Travnicek Z, Vondracek J, Karasova M, Mani S, Dvorak Z. Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. International journal of molecular sciences. 2020;21(7). doi: 10.3390/ijms21072614. PubMed PMID: 32283770; PMCID: 7177849. PubMed DOI PMC
Jin UH, Cheng Y, Park H, Davidson LA, Callaway ES, Chapkin RS, Jayaraman A, Asante A, Allred C, Weaver EA, Safe S. Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. Sci Rep. 2017;7(1):10163. doi: 10.1038/s41598-017-10824-x. PubMed PMID: 28860561; PMCID: 5579248. PubMed DOI PMC
Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clinical reviews in allergy & immunology. 2020. doi: 10.1007/s12016-020-08789-3. PubMed PMID: 32279195. PubMed DOI
Vyhlidalova B, Bartonkova I, Jiskrova E, Li H, Mani S, Dvorak Z. Differential activation of human pregnane X receptor PXR by isomeric mono-methylated indoles in intestinal and hepatic in vitro models. Toxicology letters. 2020;324:104–10. doi: 10.1016/j.toxlet.2020.02.010. PubMed PMID: 32092453. PubMed DOI
Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, Fleet JC, Kortagere S, Mukherjee P, Fasano A, Le Ven J, Nicholson JK, Dumas ME, Khanna KM, Mani S. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41(2):296–310. Epub 2014/07/30. doi: 10.1016/j.immuni.2014.06.014. PubMed PMID: 25065623; PMCID: Pmc4142105. PubMed DOI PMC
Huang K, Mukherjee S, DesMarais V, Albanese JM, Rafti E, Draghi Ii A, Maher LA, Khanna KM, Mani S, Matson AP. Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. Pediatric research. 2018;83(5):1031–40. doi: 10.1038/pr.2018.14. PubMed PMID: 29360809; PMCID: 5959752. PubMed DOI PMC
Hudson GM, Flannigan KL, Erickson SL, Vicentini FA, Zamponi A, Hirota CL, Alston L, Altier C, Ghosh S, Rioux KP, Mani S, Chang TK, Hirota SA. Constitutive androstane receptor regulates the intestinal mucosal response to injury. British journal of pharmacology. 2017;174(12):1857–71. doi: 10.1111/bph.13787. PubMed PMID: 28320072; PMCID: 5446585. PubMed DOI PMC
Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun. 2013;4:2384. doi: 10.1038/ncomms3384. PubMed PMID: 24064762; PMCID: 6595219. PubMed DOI PMC
Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, Zhang Y, Lei S, Wang S, Kuang J, Han X, Wei M, You Y, Li M, Li Y, Liang D, Liu J, Chen T, Yan C, Wei R, Rajani C, Shen C, Xie G, Bian Z, Li H, Zhao A, Jia W. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun. 2019;10(1):4971. doi: 10.1038/s41467-019-12896-x. PubMed PMID: 31672964; PMCID: 6823360. PubMed DOI PMC
Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B, Zhang S, Yun C, Lian G, Zhang X, Zhang H, Bisson WH, Shi J, Gao X, Ge P, Liu C, Krausz KW, Nichols RG, Cai J, Rimal B, Patterson AD, Wang X, Gonzalez FJ, Jiang C. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature medicine. 2018;24(12):1919–29. doi: 10.1038/s41591-018-0222-4. PubMed PMID: 30397356; PMCID: 6479226. PubMed DOI PMC
Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z, Belda-Ferre P, Tripathi A, Chung LK, Downes M, Welch RD, Quinn M, Humphrey G, Panitchpakdi M, Weldon KC, Aksenov A, da Silva R, Avila-Pacheco J, Clish C, Bae S, Mallick H, Franzosa EA, Lloyd-Price J, Bussell R, Thron T, Nelson AT, Wang M, Leszczynski E, Vargas F, Gauglitz JM, Meehan MJ, Gentry E, Arthur TD, Komor AC, Poulsen O, Boland BS, Chang JT, Sandborn WJ, Lim M, Garg N, Lumeng JC, Xavier RJ, Kazmierczak BI, Jain R, Egan M, Rhee KE, Ferguson D, Raffatellu M, Vlamakis H, Haddad GG, Siegel D, Huttenhower C, Mazmanian SK, Evans RM, Nizet V, Knight R, Dorrestein PC. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579(7797):123–9. Epub 2020/02/28. doi: 10.1038/s41586-020-2047-9. PubMed PMID: 32103176. PubMed DOI PMC
Nepelska M, de Wouters T, Jacouton E, Beguet-Crespel F, Lapaque N, Dore J, Arulampalam V, Blottiere HM. Commensal gut bacteria modulate phosphorylation-dependent PPARgamma transcriptional activity in human intestinal epithelial cells. Sci Rep. 2017;7:43199. doi: 10.1038/srep43199. PubMed PMID: 28266623; PMCID: 5339702. PubMed DOI PMC
Byndloss MX, Olsan EE, Rivera-Chavez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao Y, Litvak Y, Lopez CA, Xu G, Napoli E, Giulivi C, Tsolis RM, Revzin A, Lebrilla CB, Baumler AJ. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 2017;357(6351):570–5. doi: 10.1126/science.aam9949. PubMed PMID: 28798125; PMCID: 5642957. PubMed DOI PMC
Bassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Carbo A, Shaykhutdinov R, Jobin C, Arthur JC, Corl BA, Vogel H, Storr M, Hontecillas R. Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR gamma to suppress colitis. PloS one. 2012;7(2):e31238. doi: 10.1371/journal.pone.0031238. PubMed PMID: 22363592; PMCID: 3283634. PubMed DOI PMC
Borghi M, Puccetti M, Pariano M, Renga G, Stincardini C, Ricci M, Giovagnoli S, Costantini C, Romani L. Tryptophan as a Central Hub for Host/Microbial Symbiosis. Int J Tryptophan Res. 2020;13:1178646920919755. Epub 2020/05/22. doi: 10.1177/1178646920919755. PubMed PMID: 32435131; PMCID: PMC7225782. PubMed DOI PMC
Agus A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018;23(6):716–24. Epub 2018/06/15. doi: 10.1016/j.chom.2018.05.003. PubMed PMID: 29902437. PubMed DOI
Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell reports. 2014;9(4):1202–8. Epub 2014/12/03. doi: 10.1016/j.celrep.2014.10.032. PubMed PMID: 25456122; PMCID: PMC4308618. PubMed DOI PMC
Yang J, Chawla R, Rhee KY, Gupta R, Manson MD, Jayaraman A, Lele PP. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(11):6114–20. Epub 2020/03/04. doi: 10.1073/pnas.1916974117. PubMed PMID: 32123098; PMCID: PMC7084101. PubMed DOI PMC
Swimm A, Giver CR, DeFilipp Z, Rangaraju S, Sharma A, Ulezko Antonova A, Sonowal R, Capaldo C, Powell D, Qayed M, Kalman D, Waller EK. Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-versus-host disease. Blood. 2018;132(23):2506–19. Epub 2018/09/28. doi: 10.1182/blood-2018-03-838193. PubMed PMID: 30257880; PMCID: PMC6284212 applied for a patent on “Methods of Managing Graft Versus Host Disease (GVHD) Using Indole Carboxyaldehydes or Derivatives Thereof.” The remaining authors declare no competing financial interests. PubMed DOI PMC
Kurata K, Kawahara H, Nishimura K, Jisaka M, Yokota K, Shimizu H. Skatole regulates intestinal epithelial cellular functions through activating aryl hydrocarbon receptors and p38. Biochemical and Biophysical Research Communications. 2019;510(4):649–55. doi: 10.1016/j.bbrc.2019.01.122. PubMed DOI
Bhattarai Y, Williams BB, Battaglioli EJ, Whitaker WR, Till L, Grover M, Linden DR, Akiba Y, Kandimalla KK, Zachos NC, Kaunitz JD, Sonnenburg JL, Fischbach MA, Farrugia G, Kashyap PC. Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. Cell Host Microbe. 2018;23(6):775–85.e5. Epub 2018/06/15. doi: 10.1016/j.chom.2018.05.004. PubMed PMID: 29902441; PMCID: PMC6055526. PubMed DOI PMC
Wlodarska M, Luo C, Kolde R, d'Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O'Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ. Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe. 2017;22(1):25–37.e6. Epub 2017/07/14. doi: 10.1016/j.chom.2017.06.007. PubMed PMID: 28704649; PMCID: PMC5672633. PubMed DOI PMC
Aoki R, Aoki-Yoshida A, Suzuki C, Takayama Y. Indole-3-Pyruvic Acid, an Aryl Hydrocarbon Receptor Activator, Suppresses Experimental Colitis in Mice. J Immunol. 2018;201(12):3683–93. Epub 2018/11/16. doi: 10.4049/jimmunol.1701734. PubMed PMID: 30429284. PubMed DOI
Jin UH, Lee SO, Sridharan G, Lee K, Davidson LA, Jayaraman A, Chapkin RS, Alaniz R, Safe S. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol Pharmacol. 2014;85(5):777–88. Epub 2014/02/25. doi: 10.1124/mol.113.091165. PubMed PMID: 24563545; PMCID: PMC3990014. PubMed DOI PMC
Harper S, Avolio S, Pacini B, Di Filippo M, Altamura S, Tomei L, Paonessa G, Di Marco S, Carfi A, Giuliano C, Padron J, Bonelli F, Migliaccio G, De Francesco R, Laufer R, Rowley M, Narjes F. Potent inhibitors of subgenomic hepatitis C virus RNA replication through optimization of indole-N-acetamide allosteric inhibitors of the viral NS5B polymerase. Journal of medicinal chemistry. 2005;48(14):4547–57. doi: 10.1021/jm050056+. PubMed PMID: 15999993. PubMed DOI
Dvorak Z, Kopp F, Costello CM, Kemp JS, Li H, Vrzalova A, Stepankova M, Bartonkova I, Jiskrova E, Poulikova K, Vyhlidalova B, Nordstroem LU, Karunaratne CV, Ranhotra HS, Mun KS, Naren AP, Murray IA, Perdew GH, Brtko J, Toporova L, Schon A, Wallace WG, Walton WG, Redinbo MR, Sun K, Beck A, Kortagere S, Neary MC, Chandran A, Vishveshwara S, Cavalluzzi MM, Lentini G, Cui JY, Gu H, March JC, Chatterjee S, Matson A, Wright D, Flannigan KL, Hirota SA, Sartor RB, Mani S. Targeting the pregnane X receptor using microbial metabolite mimicry. EMBO molecular medicine. 2020;12(4):e11621. doi: 10.15252/emmm.201911621. PubMed PMID: 32153125; PMCID: 7136958. PubMed DOI PMC
Chen J, Haller CA, Jernigan FE, Koerner SK, Wong DJ, Wang Y, Cheong JE, Kosaraju R, Kwan J, Park DD, Thomas B, Bhasin S, De La Rosa RC, Premji AM, Liu L, Park E, Moss AC, Emili A, Bhasin M, Sun L, Chaikof EL. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Science advances. 2020;6(3):eaay8230. doi: 10.1126/sciadv.aay8230. PubMed PMID: 31998845; PMCID: 6962035. PubMed DOI PMC
Hubbard TD, Murray IA, Perdew GH. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab Dispos. 2015;43(10):1522–35. Epub 2015/06/05. doi: 10.1124/dmd.115.064246. PubMed PMID: 26041783; PMCID: PMC4576673. PubMed DOI PMC
Vyhlídalová B, Krasulová K, Pečinková P, Marcalíková A, Vrzal R, Zemánková L, Vančo J, Trávníček Z, Vondráček J, Karasová M, Mani S, Dvořák Z. Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. International journal of molecular sciences. 2020;21(7). Epub 2020/04/15. doi: 10.3390/ijms21072614. PubMed PMID: 32283770; PMCID: PMC7177849. PubMed DOI PMC
Chen J, Haller CA, Jernigan FE, Koerner SK, Wong DJ, Wang Y, Cheong JE, Kosaraju R, Kwan J, Park DD, Thomas B, Bhasin S, De La Rosa RC, Premji AM, Liu L, Park E, Moss AC, Emili A, Bhasin M, Sun L, Chaikof EL. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Science Advances. 2020;6(3):eaay8230. doi: 10.1126/sciadv.aay8230. PubMed DOI PMC
Mexia N, Koutrakis S, He G, Skaltsounis AL, Denison MS, Magiatis P. A Biomimetic, One-Step Transformation of Simple Indolic Compounds to Malassezia-Related Alkaloids with High AhR Potency and Efficacy. Chem Res Toxicol. 2019;32(11):2238–49. Epub 2019/10/28. doi: 10.1021/acs.chemrestox.9b00270. PubMed PMID: 31647221. PubMed DOI PMC
Yu J, Luo Y, Zhu Z, Zhou Y, Sun L, Gao J, Sun J, Wang G, Yao X, Li W. A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor. J Allergy Clin Immunol. 2019;143(6):2108–19.e12. Epub 2018/12/24. doi: 10.1016/j.jaci.2018.11.036. PubMed PMID: 30578876. PubMed DOI
Turski WA, Wnorowski A, Turski GN, Turski CA, Turski L. AhR and IDO1 in pathogenesis of Covid-19 and the "Systemic AhR Activation Syndrome" Translational review and therapeutic perspectives. Restor Neurol Neurosci. 2020. doi: 10.3233/rnn-201042. PubMed PMID: 32597823. PubMed DOI PMC
Biswas A, Mani S, Redinbo MR, Krasowski MD, Li H, Ekins S. Elucidating the 'Jekyll and Hyde' nature of PXR: the case for discovering antagonists or allosteric antagonists. Pharm Res. 2009;26(8):1807–15. Epub 2009/05/06. doi: 10.1007/s11095-009-9901-7. PubMed PMID: 19415465; PMCID: PMC2846309. PubMed DOI PMC
Naveja JJ, Medina-Franco JL. Finding Constellations in Chemical Space Through Core Analysis. Frontiers in Chemistry. 2019;7(510). doi: 10.3389/fchem.2019.00510. PubMed DOI PMC
Llanos EJ, Leal W, Luu DH, Jost J, Stadler PF, Restrepo G. Exploration of the chemical space and its three historical regimes. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(26):12660–5. Epub 2019/06/13. doi: 10.1073/pnas.1816039116. PubMed PMID: 31186353; PMCID: PMC6600933. PubMed DOI PMC
Mixture Effects of Tryptophan Intestinal Microbial Metabolites on Aryl Hydrocarbon Receptor Activity
Bacterial Indole as a Multifunctional Regulator of Klebsiella oxytoca Complex Enterotoxicity