Mixture Effects of Tryptophan Intestinal Microbial Metabolites on Aryl Hydrocarbon Receptor Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00449S
Czech Science Foundation
CZ-OPENSCREEN (LM2018130)
Czech Ministry of Education, Youth and Sports
EATRIS-CZ (LM2018133)
Czech Ministry of Education, Youth and Sports
ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868)
the European Regional Development Fund
(Programme EXCELES, ID Project No. LX22NPO5102)
National Institute for Cancer Research
PubMed
36142735
PubMed Central
PMC9505659
DOI
10.3390/ijms231810825
PII: ijms231810825
Knihovny.cz E-zdroje
- Klíčová slova
- aryl hydrocarbon receptor, indole derivatives, microbiome, mimic mixtures, tryptophan metabolites,
- MeSH
- cytochrom P-450 CYP1A1 genetika metabolismus MeSH
- indoly metabolismus farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- messenger RNA metabolismus MeSH
- propionáty MeSH
- pyruváty MeSH
- receptory aromatických uhlovodíků * metabolismus MeSH
- střeva MeSH
- tryptofan * metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytochrom P-450 CYP1A1 MeSH
- indoly MeSH
- ligandy MeSH
- messenger RNA MeSH
- propionáty MeSH
- pyruváty MeSH
- receptory aromatických uhlovodíků * MeSH
- tryptofan * MeSH
Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed.
Zobrazit více v PubMed
Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106. PubMed DOI PMC
Sittipo P., Shim J.W., Lee Y.K. Microbial metabolites determine host health and the Status of some diseases. Int. J. Mol. Sci. 2019;20:5296. doi: 10.3390/ijms20215296. PubMed DOI PMC
Gilbert J.A., Quinn R.A., Debelius J., Xu Z.Z., Morton J., Garg N., Jansson J.K., Dorrestein P.C., Knight R. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535:94–103. doi: 10.1038/nature18850. PubMed DOI
Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 2017;18:690–699. doi: 10.1038/nrg.2017.63. PubMed DOI
Modoux M., Rolhion N., Mani S., Sokol H. Tryptophan metabolism as a pharmacological target. Trends Pharmacol. Sci. 2021;42:60–73. doi: 10.1016/j.tips.2020.11.006. PubMed DOI
Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018;9:3294. doi: 10.1038/s41467-018-05470-4. PubMed DOI PMC
Zelante T., Iannitti R.G., Cunha C., De Luca A., Giovannini G., Pieraccini G., Zecchi R., D’Angelo C., Massi-Benedetti C., Fallarino F., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–385. doi: 10.1016/j.immuni.2013.08.003. PubMed DOI
Hubbard T.D., Murray I.A., Bisson W.H., Lahoti T.S., Gowda K., Amin S.G., Patterson A.D., Perdew G.H. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 2015;5:12689. doi: 10.1038/srep12689. PubMed DOI PMC
Hubbard T.D., Murray I.A., Perdew G.H. Indole and tryptophan metabolism: Endogenous and dietary routes to ah receptor activation. Drug Metab. Dispos. 2015;43:1522–1535. doi: 10.1124/dmd.115.064246. PubMed DOI PMC
Vyhlidalova B., Krasulova K., Pecinkova P., Marcalikova A., Vrzal R., Zemankova L., Vanco J., Travnicek Z., Vondracek J., Karasova M., et al. Gut microbial catabolites of tryptophan are ligands and agonists of the aryl hydrocarbon receptor: A detailed characterization. Int. J. Mol. Sci. 2020;21:2614. doi: 10.3390/ijms21072614. PubMed DOI PMC
Dvorak Z., Sokol H., Mani S. Drug mimicry: Promiscuous receptors PXR and AhR, and microbial metabolite interactions in the intestine. Trends Pharmacol. Sci. 2020;41:900–908. doi: 10.1016/j.tips.2020.09.013. PubMed DOI PMC
Nieves K.M., Hirota S.A., Flannigan K.L. Xenobiotic receptors and the regulation of intestinal homeostasis: Harnessing the chemical output of the intestinal microbiota. Am. J. Physiol. Gastrointest. Liver Physiol. 2022;322:G268–G281. doi: 10.1152/ajpgi.00160.2021. PubMed DOI
Schulte K.W., Green E., Wilz A., Platten M., Daumke O. Structural basis for aryl hydrocarbon receptor-mediated gene activation. Structure. 2017;25:1025–1033. doi: 10.1016/j.str.2017.05.008. PubMed DOI
Sogawa K., Fujisawa-Sehara A., Yamane M., Fujii-Kuriyama Y. Location of regulatory elements responsible for drug induction in the rat cytochrome P-450c gene. Proc. Natl. Acad. Sci. USA. 1986;83:8044–8048. doi: 10.1073/pnas.83.21.8044. PubMed DOI PMC
Denison M.S., Fisher J.M., Whitlock J.P., Jr. Inducible, receptor-dependent protein-DNA interactions at a dioxin-responsive transcriptional enhancer. Proc. Natl. Acad. Sci. USA. 1988;85:2528–2532. doi: 10.1073/pnas.85.8.2528. PubMed DOI PMC
Lusska A., Shen E., Whitlock J.P., Jr. Protein-DNA interactions at a dioxin-responsive enhancer. Analysis of six bona fide DNA-binding sites for the liganded Ah receptor. J. Biol. Chem. 1993;268:6575–6580. doi: 10.1016/S0021-9258(18)53289-0. PubMed DOI
Mimura J., Ema M., Sogawa K., Fujii-Kuriyama Y. Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev. 1999;13:20–25. doi: 10.1101/gad.13.1.20. PubMed DOI PMC
Bock K.W., Kohle C. Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem. Pharmacol. 2006;72:393–404. doi: 10.1016/j.bcp.2006.01.017. PubMed DOI
Marlowe J.L., Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J. Cell. Biochem. 2005;96:1174–1184. doi: 10.1002/jcb.20656. PubMed DOI
Murray I.A., Patterson A.D., Perdew G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer. 2014;14:801–814. doi: 10.1038/nrc3846. PubMed DOI PMC
Yin J., Sheng B., Qiu Y., Yang K., Xiao W., Yang H. Role of AhR in positive regulation of cell proliferation and survival. Cell Prolif. 2016;49:554–560. doi: 10.1111/cpr.12282. PubMed DOI PMC
Gutiérrez-Vázquez C., Quintana F.J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48:19–33. doi: 10.1016/j.immuni.2017.12.012. PubMed DOI PMC
Rothhammer V., Quintana F.J. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 2019;19:184–197. doi: 10.1038/s41577-019-0125-8. PubMed DOI
Backlund M., Ingelman-Sundberg M. Different structural requirements of the ligand binding domain of the aryl hydrocarbon receptor for high- and low-affinity ligand binding and receptor activation. Mol. Pharmacol. 2004;65:416–425. doi: 10.1124/mol.65.2.416. PubMed DOI
Tagliabue S.G., Faber S.C., Motta S., Denison M.S., Bonati L. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Sci. Rep. 2019;9:10693. doi: 10.1038/s41598-019-47138-z. PubMed DOI PMC
Stepankova M., Bartonkova I., Jiskrova E., Vrzal R., Mani S., Kortagere S., Dvorak Z. Methylindoles and methoxyindoles are agonists and antagonists of human aryl hydrocarbon receptor. Mol. Pharmacol. 2018;93:631–644. doi: 10.1124/mol.118.112151. PubMed DOI PMC
Jin U.H., Cheng Y., Park H., Davidson L.A., Callaway E.S., Chapkin R.S., Jayaraman A., Asante A., Allred C., Weaver E.A., et al. Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and caco-2 human colon cancer cells. Sci. Rep. 2017;7:10163. doi: 10.1038/s41598-017-10824-x. PubMed DOI PMC
Modoux M., Rolhion N., Lefevre J.H., Oeuvray C., Nádvorník P., Illes P., Emond P., Parc Y., Mani S., Dvorak Z., et al. Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut. Microbes. 2022;14:2105637. doi: 10.1080/19490976.2022.2105637. PubMed DOI PMC
Darkoh C., Chappell C., Gonzales C., Okhuysen P. A rapid and specific method for the detection of indole in complex biological samples. Appl. Environ. Microbiol. 2015;81:8093–8097. doi: 10.1128/AEM.02787-15. PubMed DOI PMC
Dong F., Hao F., Murray I.A., Smith P.B., Koo I., Tindall A.M., Kris-Etherton P.M., Gowda K., Amin S.G., Patterson A.D., et al. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut. Microbes. 2020;12:1788899. doi: 10.1080/19490976.2020.1788899. PubMed DOI PMC
Illés P., Krasulová K., Vyhlídalová B., Poulíková K., Marcalíková A., Pečinková P., Sirotová N., Vrzal R., Mani S., Dvořák Z. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol. Lett. 2020;334:87–93. doi: 10.1016/j.toxlet.2020.09.015. PubMed DOI
Tindall A.M., Petersen K.S., Skulas-Ray A.C., Richter C.K., Proctor D.N., Kris-Etherton P.M. Replacing saturated fat with walnuts or vegetable oils improves central blood pressure and serum lipids in adults at risk for cardiovascular disease: A randomized controlled-feeding trial. J. Am. Heart Assoc. 2019;8:e011512. doi: 10.1161/JAHA.118.011512. PubMed DOI PMC
Li H., Illés P., Karunaratne C.V., Nordstrøm L.U., Luo X., Yang A., Qiu Y., Kurland I.J., Lukin D.J., Chen W., et al. Deciphering structural bases of intestinal and hepatic selectivity in targeting pregnane X receptor with indole-based microbial mimics. Bioorg. Chem. 2021;109:104661. doi: 10.1016/j.bioorg.2021.104661. PubMed DOI PMC
Rasmussen M.K., Balaguer P., Ekstrand B., Daujat-Chavanieu M., Gerbal-Chaloin S. Skatole (3-Methylindole) is a partial aryl hydrocarbon receptor agonist and induces CYP1A1/2 and CYP1B1 expression in primary human hepatocytes. PLoS ONE. 2016;11:e0154629. doi: 10.1371/journal.pone.0154629. PubMed DOI PMC
Rothhammer V., Mascanfroni I.D., Bunse L., Takenaka M.C., Kenison J.E., Mayo L., Chao C.C., Patel B., Yan R., Blain M., et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 2016;22:586–597. doi: 10.1038/nm.4106. PubMed DOI PMC
Delfosse V., Dendele B., Huet T., Grimaldi M., Boulahtouf A., Gerbal-Chaloin S., Beucher B., Roecklin D., Muller C., Rahmani R., et al. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat. Commun. 2015;6:8089. doi: 10.1038/ncomms9089. PubMed DOI PMC
Venkatesh M., Mukherjee S., Wang H., Li H., Sun K., Benechet A.P., Qiu Z., Maher L., Redinbo M.R., Phillips R.S., et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41:296–310. doi: 10.1016/j.immuni.2014.06.014. PubMed DOI PMC
Gruszczyk J., Grandvuillemin L., Lai-Kee-Him J., Paloni M., Savva C.G., Germain P., Grimaldi M., Boulahtouf A., Kwong H.-S., Bous J., et al. Cryo-EM structure of the agonist-bound Hsp90-XAP2-AHR cytosolic complex. bioRxiv. 2022 doi: 10.1101/2022.05.17.491947. PubMed DOI PMC
Wincent E., Bengtsson J., Mohammadi Bardbori A., Alsberg T., Luecke S., Rannug U., Rannug A. Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA. 2012;109:4479–4484. doi: 10.1073/pnas.1118467109. PubMed DOI PMC
Vyhlidalova B., Poulikova K., Bartonkova I., Krasulova K., Vanco J., Travnicek Z., Mani S., Dvorak Z. Mono-methylindoles induce CYP1A genes and inhibit CYP1A1 enzyme activity in human hepatocytes and HepaRG cells. Toxicol. Lett. 2019;313:66–76. doi: 10.1016/j.toxlet.2019.06.004. PubMed DOI PMC
Novotna A., Pavek P., Dvorak Z. Novel stably transfected gene reporter human hepatoma cell line for assessment of aryl hydrocarbon receptor transcriptional activity: Construction and characterization. Environ. Sci Technol. 2011;45:10133–10139. doi: 10.1021/es2029334. PubMed DOI
Novotna A., Pavek P., Dvorak Z. Construction and characterization of a reporter gene cell line for assessment of human glucocorticoid receptor activation. Eur. J. Pharm. Sci. 2012;47:842–847. doi: 10.1016/j.ejps.2012.10.003. PubMed DOI
Bartonkova I., Grycova A., Dvorak Z. Profiling of vitamin D metabolic intermediates toward VDR using novel stable gene reporter cell lines IZ-VDRE and IZ-CYP24. Chem. Res. Toxicol. 2016;29:1211–1222. doi: 10.1021/acs.chemrestox.6b00170. PubMed DOI
Bartonkova I., Novotna A., Dvorak Z. Novel stably transfected human reporter cell line AIZ-AR as a tool for an assessment of human androgen receptor transcriptional activity. PLoS ONE. 2015;10:e0121316. doi: 10.1371/journal.pone.0121316. PubMed DOI PMC
Illes P., Grycova A., Krasulova K., Dvorak Z. Effects of flavored nonalcoholic beverages on transcriptional activities of nuclear and steroid hormone receptors: Proof of concept for novel reporter cell line PAZ-PPARg. J. Agric. Food Chem. 2018;66:12066–12078. doi: 10.1021/acs.jafc.8b05158. PubMed DOI
Chou T.-C. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res. 2010;70:440–446. doi: 10.1158/0008-5472.CAN-09-1947. PubMed DOI
Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI
Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR)