Microstructural Analysis and Mechanical Properties of TiMo20Zr7Ta15Six Alloys as Biomaterials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PNCDI III-P1-1.2-PCCDI-207-03239/60PCCDI 2018
Ministry of Education and Research, Romania
PubMed
33126523
PubMed Central
PMC7663523
DOI
10.3390/ma13214808
PII: ma13214808
Knihovny.cz E-zdroje
- Klíčová slova
- acoustic emission, inhomogeneities, mechanical properties, microstructure, resonant ultrasound spectroscopy, titanium alloys,
- Publikační typ
- časopisecké články MeSH
TiMoZrTaSi alloys appertain to a new generation of metallic biomaterials, labeled high-entropy alloys, that assure both biocompatibility as well as improved mechanical properties required by further medical applications. This paper presents the use of nondestructive evaluation techniques for new type of alloys, TiMo20Zr7Ta15Six, with x = 0; 0.5; 0.75; 1.0, which were obtained by vacuum melting. In Ti alloys, the addition of Mo improves tensile creep strength, Si improves both the creep and oxidation properties, Zr leads to an α crystalline structure, which increases the mechanical strength and assures a good electrochemical behavior, and Ta is a β stabilizer sustaining the formation of solid β-phases and contributes to tensile strength improvement and Young modulus decreasing. The effects of Si content on the mechanical properties of the studied alloys and the effect of the addition of Ta and Zr under the presence of Si on the evolution of crystallographic structure was studied. The influence of composition on fracture behavior and strength was evaluated using X-ray diffraction, resonant ultrasound spectroscopy (RUS) analyses, SEM with energy dispersive X-ray spectroscopy, and acoustic emission (AE) within compression tests. The β-type TiMo20Zr7Ta15Six alloys had a good compression strength of over 800 MPa, lower Young modulus (69.11-89.03 GPa) and shear modulus (24.70-31.87 GPa), all offering advantages for use in medical applications.
Department of Materials Engineering University of Zilina 010 26 Zilina Slovak Republic
Frank Laboratory for Neutron Physics Joint Institute for Nuclear Research Dubna 141980 Russia
Institute of Thermomechanics Academy of Sciences of the Czech Republic 182 00 Prague Czech Republic
National Institute of Standards and Technology Gaithersburg MD 20899 USA
Normandie Université ENSICAEN UNICAEN CNRS CRISMAT 14000 Caen France
Zobrazit více v PubMed
Food Drug Administration . Biological Responses to Metal Implants. Food Drug Administration; Silver Spring, MD, USA: 2019.
Ryu D.J., Ban H.Y., Jung E.Y., Sonn C.H., Hong D.H., Ahmad S., Gweon B., Lim D., Wang J.H. Osteo-Compatibility of 3D Titanium Porous Coating Applied by Direct Energy Deposition (DED) for a Cementless Total Knee Arthroplasty Implant: In Vitro and In Vivo Study. J. Clin. Med. 2020;9:478. doi: 10.3390/jcm9020478. PubMed DOI PMC
Bai W., Xu G., Tan M., Yang Z., Zeng L., Wu D., Liu L., Zhang L. Diffusivities and atomic mobilities in bcc Ti-Mo-Zr alloys. Materials. 2018;11:1909. doi: 10.3390/ma11101909. PubMed DOI PMC
Dryburgh P., Patel R., Pieris D.M., Hirsch M., Li W., Sharples S.D., Smith R.J., Clare A.T., Clark M. Spatially resolved acoustic spectroscopy for texture imaging in powder bed fusion nickel superalloys; Proceedings of the 45th Annual Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings; Burlington, VT, USA. 15–19 July 2018; Melville, NY, USA: AIP Publishing LLC; 2019.
Cambiaghi A. Biological Evaluation of Medical Devices as an Essential Part of the Risk Management Process: Updates and Challenges of ISO 10993-1. Eurofins Group; Luxembourg: 2018.
ISO 10993-1 . Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process. International Organization for Standardization; Geneva, Switzerland: 2018.
Hegyeli R.J. Limitations of current techniques for the evaluation of the biohazards and biocompatibility of new candidate materials. J. Biomed. Mater. Res. 1971;5:1–14. PubMed
Rack H.J., Qazi J.I. Titanium alloys for biomedical applications. Mater. Sci. Eng. C. 2006;26:1269–1277. doi: 10.1016/j.msec.2005.08.032. DOI
Villars P., Prince A., Okamoto H. Handbook of Ternary Alloy Phase Diagrams. Volume 10. ASM International; Almere, The Netherlands: 1995. p. 13621.
Mao Y., Li S., Zhang J., Peng J., Zou D., Zhong Z. Microstructure and tensile properties of orthorhombic Ti–Al–Nb–Ta alloys. Intermetallics. 2000;8:659–662. doi: 10.1016/S0966-9795(99)00151-X. DOI
Zhang L.C., Chen L.Y. A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 2019;21:1801215. doi: 10.1002/adem.201801215. DOI
Li Y., Yang C., Zhao H., Qu S., Li X., Li Y. New developments of Ti-based alloys for biomedical applications. Materials. 2014;7:1709–1800. doi: 10.3390/ma7031709. PubMed DOI PMC
Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Savin A., Vizureanu P., Prevorovsky Z., Chlada M., Krofta J., Baltatu M.S., Istrate B., Steigmann R. Noninvasive Evaluation of Special Alloys for Prostheses Using Complementary Methods. MS&E. 2018;374:012030.
Sandu A.V., Baltatu M.S., Nabialek M., Savin A., Vizureanu P. Characterization and mechanical properties of new TiMo alloys used for medical applications. Materials. 2019;12:2973. doi: 10.3390/ma12182973. PubMed DOI PMC
Savin A., Craus M.L., Bruma A., Novy F., Minarik P., Jabor M., Malo S., Steigmann R., Vizureanu P., Harnois C., et al. Low-Dimensional Materials and Devices. International Society for Optics and Photonics; Bellingham, WA, USA: 2020. Material properties mapping using complementary methods in titanium alloys TiMoSi used in medical application; p. 114650Z.
Trincă L.C., Mareci D., Solcan C., Fântânariu M., Burtan L., Vulpe V., Hriţcu L.D., Souto R.M. In vitro corrosion resistance and in vivo osseointegration testing of new multifunctional beta-type quaternary TiMoZrTa alloys. Mat. Sci. Eng. C. 2019;108:110485. doi: 10.1016/j.msec.2019.110485. PubMed DOI
Kuroda D., Niinomi M., Morinaga M., Kato Y., Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Mat. Sci. Eng. A. 1998;243:244–249. doi: 10.1016/S0921-5093(97)00808-3. DOI
Zhao G.H., Liang X.Z., Kim B., Rivera-Díaz-del-Castillo P.E.J. Modelling strengthening mechanisms in beta-type Ti alloys. Mat. Sci. Eng. A. 2019;756:156–160. doi: 10.1016/j.msea.2019.04.027. DOI
Inaekyan K., Brailovski V., Prokoshkin S., Pushin V., Dubinskiy S., Sheremetyev V. Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys. Mater. Charact. 2015;103:65–74. doi: 10.1016/j.matchar.2015.03.016. DOI
Kudrman J., Fousek J., Brezina V., Míková R., Vesely J. Titanium alloys for implants in medicine. Kov. Mater. 2007;45:199.
Correa D.R.N., Vicente F.B., Araújo R.O., Lourenço M.L., Kuroda P.A.B., Buzalaf M.A.R., Grandini C.R. Effect of the substitutional elements on the microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo systems alloys. J. Mater. Res. Tech. 2015;4:180–185. doi: 10.1016/j.jmrt.2015.02.007. DOI
Karimi-Sibaki E., Kharicha A., Wu M., Ludwig A., Bohacek J. A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling. Metall. Mater. Trans. B. 2020;51:222–235. doi: 10.1007/s11663-019-01719-5. DOI
ASTM E2001-18 . Guide for Resonant Ultrasound Spectroscopy for Defect Detection in Both Metallic and Non-Metallic Parts. ASTM International; West Conshohocken, PA, USA: 2018.
Stráský J., Harcuba P., Václavová K., Horváth K., Landa M., Srba O., Janeček M. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J. Mech. Behav. Biomed. 2012;71:329–336. doi: 10.1016/j.jmbbm.2017.03.026. PubMed DOI
Liu G., Maynard J.D. Measuring elastic constants of arbitrarily shaped samples using resonant ultrasound spectroscopy. J. Acoust. Soc. Am. 2012;131:2068–2078. doi: 10.1121/1.3677259. PubMed DOI
BS EN 13554 . Non-Destructive Testing-Acoustic Emission Testing-General Principles. British Standard Institution Group; London, UK: 2011.
BS EN 1330-9 . Non-Destructive Testing. Terminology. Terms Used in Acoustic Emission Testing. British Standard Institution Group; London, UK: 2017.
ASTM E1316-18a . Standard Terminology for Nondestructive Examinations. ASTM International; West Conshohocken, PA, USA: 2018.
ASTM E1932-12 . Standard Guide for Acoustic Emission Examination of Small Parts. ASTM International; West Conshohocken, PA, USA: 2017.
Ereifej N., Silikas N., Watts D.C. Initial versus final fracture of metal-free crowns, analyzed via acoustic emission. Dent. Mater. 2008;24:1289–1295. doi: 10.1016/j.dental.2008.04.010. PubMed DOI
Mavrogordato M., Taylor M., Taylor A., Browne M. Real time monitoring of progressive damage during loading of a simplified total hip stem construct using embedded acoustic emission sensors. Med. Eng. Phys. 2011;33:395–406. doi: 10.1016/j.medengphy.2010.10.025. PubMed DOI
Cormier J.M., Manoogian S.J., Bisplinghoff J., McNally C., Duma S. The use of acoustic emission in facial fracture detection. Biomed. Sci. Instrum. 2008;44:147–152. PubMed
ASTM . E384: Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM International; West Conshohocken, PA, USA: 2012. pp. 1–43.
Sakaguchi N., Niinomi M., Akahori T., Takeda J., Toda H. Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr. Mater. Sci. Eng. C. 2005;25:370–376. doi: 10.1016/j.msec.2005.04.003. DOI
Lide D.R., editor. CRC Handbook of Chemistry and Physics. Volume 85 CRC Press; Boca Raton, FL, USA: 2004.
Morinaga M., Kato M., Kamimura T., Fukumoto M., Harada I., Kubo K. Titanium’92: Science and Technology. The Minerals, Metals & Materials Society; Pittsburgh, PA, USA: 1993. Theoretical Design of Beta-Type Titanium Alloys; pp. 217–224.
Biesiekierski A., Wang J., Gepreel M.A.H., Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–1669. doi: 10.1016/j.actbio.2012.01.018. PubMed DOI
Ehtemam-Haghighi S., Cao G., Zhang L.C. Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. J. Alloys Compd. 2017;692:892–897. doi: 10.1016/j.jallcom.2016.09.123. DOI
Ehtemam-Haghighi S., Liu Y., Cao G., Zhang L.C. Influence of Nb on the β→α martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Mater. Sci. Eng. C. 2016;60:503–510. doi: 10.1016/j.msec.2015.11.072. PubMed DOI
Li C., Lee D.G., Mi X., Ye W., Hui S., Lee Y. Phase transformation and age hardening behavior of new Ti–9.2 Mo–2Fe alloy. J. Alloys Compd. 2013;549:152–157. doi: 10.1016/j.jallcom.2012.08.065. DOI
Laheurte P., Prima F., Eberhardt A., Gloriant T., Wary M., Patoor E. Mechanical properties of low modulus β titanium alloys designed from the electronic approach. J. Mech. Behav. Biomed. 2010;3:565–573. doi: 10.1016/j.jmbbm.2010.07.001. PubMed DOI
Nagase T., Todai M., Hori T., Nakano T. Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. J. Alloys Compd. 2018;753:412–421. doi: 10.1016/j.jallcom.2018.04.082. DOI
Visscher W.M., Migliori A., Bell T.M., Reinert R.A. On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects. J. Acoust. Soc. Am. 1991;90:2154–2162. doi: 10.1121/1.401643. DOI
Migliori A., Maynard J.D. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Rev. Sci. Instrum. 2005;76:121301. doi: 10.1063/1.2140494. DOI
Landau L.D., Lifshitz E.M. Theory of Elasticity. 3rd ed. Pergamon Press; London, UK: 1986.
Zadler B.J., Le Rousseau J.H., Scales J.A., Smith M.L. Resonant ultrasound spectroscopy: Theory and application. Geophys. J. Int. 2004;156:154–169. doi: 10.1111/j.1365-246X.2004.02093.x. DOI
Balakirev F.F., Ennaceur S.M., Migliori R.J., Maiorov B., Migliori A. Resonant ultrasound spectroscopy: The essential toolbox. Rev. Sci. Instrum. 2019;90:121401. doi: 10.1063/1.5123165. PubMed DOI
Leisure R.G. Ultrasonic Spectroscopy: Applications in Condensed Matter Physics and Materials Science. Cambridge University Press; Cambridge, UK: 2017.
Flynn K., Radovic M. Evaluation of defects in materials using resonant ultrasound spectroscopy. J. Mater. Sci. 2011;46:2548–2556. doi: 10.1007/s10853-010-5107-y. DOI
Drozdenko D., Bohlen J., Yi S., Minárik P., Chmelík F., Dobroň P. Investigating a twinning–detwinning process in wrought Mg alloys by the acoustic emission technique. Acta Mater. 2016;110:103–113. doi: 10.1016/j.actamat.2016.03.013. DOI