Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
100320/Z/ 12/Z
Wellcome Trust - United Kingdom
MR/S019650/1
Medical Research Council - United Kingdom
BB/S001034/1
Biotechnology and Biological Sciences Research Council - United Kingdom
MR/L018853/1
Medical Research Council - United Kingdom
203134/Z/16/Z
Wellcome Trust - United Kingdom
104111/Z/14/ Z
Wellcome Trust - United Kingdom
203134/Z/ 16/Z
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
PubMed
33141865
PubMed Central
PMC7710103
DOI
10.1371/journal.ppat.1008932
PII: PPATHOGENS-D-20-00932
Knihovny.cz E-zdroje
- MeSH
- dobytek MeSH
- karboxypeptidasy metabolismus MeSH
- kyseliny karboxylové metabolismus MeSH
- léková rezistence MeSH
- myši MeSH
- parazitemie veterinární MeSH
- prekurzory léčiv metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- sloučeniny boru metabolismus MeSH
- trypanocidální látky metabolismus MeSH
- Trypanosoma brucei brucei účinky léků enzymologie MeSH
- Trypanosoma congolense účinky léků enzymologie MeSH
- Trypanosoma vivax účinky léků enzymologie MeSH
- trypanozomóza africká farmakoterapie parazitologie veterinární MeSH
- valin analogy a deriváty metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AN11736 MeSH Prohlížeč
- karboxypeptidasy MeSH
- kyseliny karboxylové MeSH
- prekurzory léčiv MeSH
- protozoální proteiny MeSH
- serine carboxypeptidase MeSH Prohlížeč
- sloučeniny boru MeSH
- trypanocidální látky MeSH
- valin MeSH
Livestock diseases caused by Trypanosoma congolense, T. vivax and T. brucei, collectively known as nagana, are responsible for billions of dollars in lost food production annually. There is an urgent need for novel therapeutics. Encouragingly, promising antitrypanosomal benzoxaboroles are under veterinary development. Here, we show that the most efficacious subclass of these compounds are prodrugs activated by trypanosome serine carboxypeptidases (CBPs). Drug-resistance to a development candidate, AN11736, emerged readily in T. brucei, due to partial deletion within the locus containing three tandem copies of the CBP genes. T. congolense parasites, which possess a larger array of related CBPs, also developed resistance to AN11736 through deletion within the locus. A genome-scale screen in T. brucei confirmed CBP loss-of-function as the primary mechanism of resistance and CRISPR-Cas9 editing proved that partial deletion within the locus was sufficient to confer resistance. CBP re-expression in either T. brucei or T. congolense AN11736-resistant lines restored drug-susceptibility. CBPs act by cleaving the benzoxaborole AN11736 to a carboxylic acid derivative, revealing a prodrug activation mechanism. Loss of CBP activity results in massive reduction in net uptake of AN11736, indicating that entry is facilitated by the concentration gradient created by prodrug metabolism.
Anacor Pharmaceuticals Inc Palo Alto California United States of America
Current address Bioinformatics Group Wageningen University Wageningen the Netherlands
Zobrazit více v PubMed
O'Neill J. Tackling drug-resistant infections globally: final report and recommendations—The review on antimicrobial resistance. 2016. Available from: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
Swallow BM. Impacts of trypanosomiasis on African agriculture. PAAT Technical and Scientific Series 2, FAO, Rome: 2000.
Giordani F, Morrison LJ, Rowan TG, de Koning HP, Barrett MP. The animal trypanosomiases and their chemotherapy: a review. Parasitology. 2016;143: 1862–1889. 10.1017/S0031182016001268 PubMed DOI PMC
Liu CT, Tomsho JW, Benkovic SJ. The unique chemistry of benzoxaboroles: current and emerging applications in biotechnology and therapeutic treatments. Bioorg Med Chem. 2014;22: 4462–4473. 10.1016/j.bmc.2014.04.065 PubMed DOI
Nocentini A, Supuran CT, Winum JY. Benzoxaborole compounds for therapeutic uses: a patent review (2010–2018). Expert Opin Ther Pat. 2018;28: 493–504. 10.1080/13543776.2018.1473379 PubMed DOI
Van Bocxlaer K, Caridha D, Black C, Vesely B, Leed S, Sciotti RJ, et al. Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist. 2019;11: 129–138. 10.1016/j.ijpddr.2019.02.002 PubMed DOI PMC
Ding D, Zhao Y, Meng Q, Xie D, Nare B, Chen D, et al. Discovery of novel benzoxaborole-based potent antitrypanosomal agents. ACS Med Chem Lett. 2010;1: 165–169. 10.1021/ml100013s PubMed DOI PMC
Del Rosso JQ, Plattner JJ. From the test tube to the treatment room: fundamentals of boron-containing compounds and their relevance to dermatology. J Clin Aesthet Dermatol. 2014;7: 13–21. PubMed PMC
Jacobs RT, Nare B, Wring SA, Orr MD, Chen D, Sligar JM, et al. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis. PLoS Negl Trop Dis. 2011; 5: e1151 10.1371/journal.pntd.0001151 PubMed DOI PMC
Jacobs RT, Plattner JJ, Nare B, Wring SA, Chen D, Freund Y, et al. Benzoxaboroles: a new class of potential drugs for human African trypanosomiasis. Future Med Chem. 2011;3: 1259–1278. 10.4155/fmc.11.80 PubMed DOI
Buscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet. 2017;390: 2397–2409. 10.1016/S0140-6736(17)31510-6 PubMed DOI
Barrett MP. The elimination of human African trypanosomiasis is in sight: report from the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Negl Trop Dis. 2018;12: e0006925 10.1371/journal.pntd.0006925 PubMed DOI PMC
Akama T, Zhang YK, Freund YR, Berry P, Lee J, Easom EE, et al. Identification of a 4-fluorobenzyl l-valinate amide benzoxaborole (AN11736) as a potential development candidate for the treatment of Animal African Trypanosomiasis (AAT). Bioorg Med Chem Lett. 2018;28: 6–10. 10.1016/j.bmcl.2017.11.028 PubMed DOI PMC
Begolo D, Vincent IM, Giordani F, Pöhner I, Witty MJ, Rowan TG, et al. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS pathog. 2018;14: e1007315 10.1371/journal.ppat.1007315 PubMed DOI PMC
Wall RJ, Rico E, Lukac I, Zuccotto F, Elg S, Gilbert IH, et al. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Proc Natl Acad Sci USA. 2018;115: 9616–9621. 10.1073/pnas.1807915115 PubMed DOI PMC
Jones DC, Foth BJ, Urbaniak MD, Patterson S, Ong HB, Berriman M, et al. Genomic and proteomic studies on the mode of action of oxaboroles against the African trypanosome. PLoS Negl Trop Dis. 2015;9: e0004299 10.1371/journal.pntd.0004299 PubMed DOI PMC
Sonoiki E, Ng CL, Lee MC, Guo D, Zhang YK, Zhou Y, et al. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nat Commun. 2017;8: 14574. PubMed PMC
Palencia A, Bougdour A, Brenier-Pinchart MP, Touquet B, Bertini RL, Sensi C, et al. Targeting Toxoplasma gondii CPSF3 as a new approach to control toxoplasmosis. EMBO Mol Med. 2017;9: 385–394. PubMed PMC
Rock FL, Mao W, Yaremchuk A, Tukalo M, Crépin T, Zhou H, et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science. 2007;316: 1759–1761. 10.1126/science.1142189 PubMed DOI
Hernandez V, Crépin T, Palencia A, Cusack S, Akama T, Baker SJ, et al. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrob Agents Chemother. 2013;57: 1394–1403. 10.1128/AAC.02058-12 PubMed DOI PMC
Xia Y, Cao K, Zhou Y, Alley MR, Rock F, Mohan M, et al. Synthesis and SAR of novel benzoxaboroles as a new class of beta-lactamase inhibitors. Bioorg Med Chem Lett. 2011;21: 2533–2536. 10.1016/j.bmcl.2011.02.024 PubMed DOI
Steketee PC, Vincent IM, Achcar F, Giordani F, Kim DH, Creek DJ, et al. Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei. PLoS Negl Trop Dis. 2018;12: e0006450 10.1371/journal.pntd.0006450 PubMed DOI PMC
Michaeli S. Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol. 2011;6: 459–474. 10.2217/fmb.11.20 PubMed DOI
Zhang N, Zoltner M, Leung KF, Scullion P, Hutchinson S, del Pino RC, et al. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog. 2018;14: e1006850 10.1371/journal.ppat.1006850 PubMed DOI PMC
Sindhe KMV, Wu W, Legac J, Zhang YK, Easom EE, Cooper RA, et al. Plasmodium falciparum resistance to a lead benzoxaborole due to blocked compound activation and altered ubiquitination or sumoylation. mBio. 2020;11: e02640–19. 10.1128/mBio.02640-19 PubMed DOI PMC
Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature. 2012;482: 232–236. 10.1038/nature10771 PubMed DOI PMC
Rico E, Jeacock L, Kovarova J, Horn D. Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes. Sci Rep. 2018;8: 7960 10.1038/s41598-018-26303-w PubMed DOI PMC
Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics. 1996;142: 693–704. PubMed PMC
Endrizzi JA, Breddam K, Remington SJ. 2.8-Å structure of yeast serine carboxypeptidase. Biochemistry. 1994;33: 11106–11120. 10.1021/bi00203a007 PubMed DOI
Jung G, Ueno H, Hayashi R. Proton-relay system of carboxypeptidase Y as a sole catalytic site: studies on mutagenic replacement of His 397. J Biochem. 1998;124: 446–450. 10.1093/oxfordjournals.jbchem.a022133 PubMed DOI
Parussini F, García M, Mucci J, Agüero F, Sánchez D, Hellman U, et al. Characterization of a lysosomal serine carboxypeptidase from Trypanosoma cruzi. Mol Biochem Parasitol. 2003;131: 11–23. 10.1016/s0166-6851(03)00175-0 PubMed DOI
Breddam K. Serine carboxypeptidases. A review. Carlsberg Res Commun. 1986;51: 83–128.
Remington SJ, Breddam K. Carboxypeptidases C and D. Methods Enzymol. 1994;244: 231–248. 10.1016/0076-6879(94)44020-4 PubMed DOI
Alvarez VE, Niemirowicz GT, Cazzulo JJ. The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim Biophys Acta. 2012;1824: 195–206. 10.1016/j.bbapap.2011.05.011 PubMed DOI
Coustou V, Guegan F, Plazolles N, Baltz T. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools. PLoS Negl Trop Dis. 2010;4: e618 10.1371/journal.pntd.0000618 PubMed DOI PMC
Creek DJ, Nijagal B, Kim DH, Rojas F, Matthews KR, Barrett MP. Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrob Agents Chemother. 2013;57: 2768–2779. 10.1128/AAC.00044-13 PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013;30: 923–930. 10.1093/bioinformatics/btt656 PubMed DOI
Proudfoot C, McCulloch R. Distinct roles for two RAD51-related genes in Trypanosoma brucei antigenic variation. Nucleic Acids Res. 2005;33: 6906–6919. 10.1093/nar/gki996 PubMed DOI PMC
Schumann Burkard G, Jutzi P, Roditi I. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol. 2011;175: 91–94. 10.1016/j.molbiopara.2010.09.002 PubMed DOI
Rawlings ND, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2012;40: D343–D350. 10.1093/nar/gkr987 PubMed DOI PMC
Glover L, Alsford S, Baker N, Turner DJ, Sanchez-Flores A, Hutchinson S, et al. Genome-scale RNAi screens for high-throughput phenotyping in bloodstream-form African trypanosomes. Nat Protoc. 2015;10: 106–133. 10.1038/nprot.2015.005 PubMed DOI
Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28: 464–469. 10.1093/bioinformatics/btr703 PubMed DOI PMC
Jones NG, Thomas EB, Brown E, Dickens NJ, Hammarton TC, Mottram JC. Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a kinome-wide RNAi screen. PLoS Pathog. 2014;10: e1003886 10.1371/journal.ppat.1003886 PubMed DOI PMC
Creek DJ, Jankevics A, Burgess KE, Breitling R, Barrett MP. IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics. 2012;28: 1048–1049. 10.1093/bioinformatics/bts069 PubMed DOI
Gloaguen Y, Morton F, Daly R, Gurden R, Rogers S, Wandy J, et al. PiMP my metabolome: an integrated, web-based tool for LC-MS metabolomics data. Bioinformatics. 2017;33: 4007–4009. PubMed PMC
Wyllie S, Roberts AJ, Norval S, Patterson S, Foth BJ, Berriman M, et al. Activation of bicyclic nitro-drugs by a novel nitroreductase (NTR2) in Leishmania. PLoS Pathog. 2016;12: e1005971 10.1371/journal.ppat.1005971 PubMed DOI PMC