ArfB can displace mRNA to rescue stalled ribosomes

. 2020 Nov 03 ; 11 (1) : 5552. [epub] 20201103

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid33144582

Grantová podpora
F31 HL152650 NHLBI NIH HHS - United States
R01 GM106105 NIGMS NIH HHS - United States
R01 GM107465 NIGMS NIH HHS - United States
R35 GM127094 NIGMS NIH HHS - United States

Odkazy

PubMed 33144582
PubMed Central PMC7641280
DOI 10.1038/s41467-020-19370-z
PII: 10.1038/s41467-020-19370-z
Knihovny.cz E-zdroje

Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.

Zobrazit více v PubMed

Korostelev AA. Structural aspects of translation termination on the ribosome. RNA. 2011;17:1409–1421. doi: 10.1261/rna.2733411. PubMed DOI PMC

Dunkle JA, Cate JH. Ribosome structure and dynamics during translocation and termination. Annu. Rev. Biophys. 2010;39:227–244. doi: 10.1146/annurev.biophys.37.032807.125954. PubMed DOI

Ramakrishnan, V. Ribosomes: Structure, Function, and Dynamics (eds Rodnina, M., Wintermeyer, W. & Green, R.) 19–30 (Springer, 2011).

Rodnina, M. V. Translation in prokaryotes. Cold Spring Harb Perspect Biol10, 10.1101/cshperspect.a032664 (2018). PubMed PMC

Youngman EM, McDonald ME, Green R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev. Microbiol. 2008;62:353–373. doi: 10.1146/annurev.micro.61.080706.093323. PubMed DOI

Hayes CS, Keiler KC. Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett. 2010;584:413–419. doi: 10.1016/j.febslet.2009.11.023. PubMed DOI PMC

Keiler KC. Mechanisms of ribosome rescue in bacteria. Nat. Rev. Microbiol. 2015;13:285–297. doi: 10.1038/nrmicro3438. PubMed DOI

Ito K, et al. Nascentome analysis uncovers futile protein synthesis in Escherichia coli. PLoS ONE. 2011;6:e28413. doi: 10.1371/journal.pone.0028413. PubMed DOI PMC

Huter P, Muller C, Arenz S, Beckert B, Wilson DN. Structural basis for ribosome rescue in Bacteria. Trends Biochem. Sci. 2017;42:669–680. doi: 10.1016/j.tibs.2017.05.009. PubMed DOI

Kogure H, et al. Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ. Nucleic Acids Res. 2014;42:3152–3163. PubMed PMC

Kogure H, et al. Solution structure and siRNA-mediated knockdown analysis of the mitochondrial disease-related protein C12orf65. Proteins. 2012;80:2629–2642. PubMed

Richter R, et al. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. Embo J. 2010;29:1116–1125. PubMed PMC

Feaga HA, Quickel MD, Hankey-Giblin PA, Keiler KC. Human cells require non-stop ribosome rescue activity in mitochondria. PLoS Genet. 2016;12:e1005964. PubMed PMC

Greber BJ, et al. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature. 2014;505:515–519. PubMed

Gagnon MG, Seetharaman SV, Bulkley D, Steitz TA. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science. 2012;335:1370. PubMed PMC

Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res. 2011;39:1739–1748. PubMed PMC

Akabane S, Ueda T, Nierhaus KH, Takeuchi N. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLoS Genet. 2014;10:e1004616. PubMed PMC

Svidritskiy E, Korostelev AA. Mechanism of inhibition of translation termination by blasticidin S. J. Mol. Biol. 2018;430:591–593. PubMed PMC

Jenner L, Demeshkina N, Yusupova G, Yusupov M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat. Struct. Mol. Biol. 2010;17:1072–1078. PubMed

Yusupova GZ, Yusupov MM, Cate JHD, Noller HF. The path of messenger RNA through the ribosome. Cell. 2001;106:233–241. PubMed

Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. Structural basis for messenger RNA movement on the ribosome. Nature. 2006;444:391–394. PubMed

Adio, S. et al. Dynamics of ribosomes and release factors during translation termination in E. coli.Elife7, 10.7554/eLife.34252 (2018). PubMed PMC

Prabhakar A, Capece MC, Petrov A, Choi J, Puglisi JD. Post-termination ribosome intermediate acts as the gateway to ribosome recycling. Cell Rep. 2017;20:161–172. PubMed PMC

Sternberg SH, Fei J, Prywes N, McGrath KA, Gonzalez RL., Jr Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat. Struct. Mol. Biol. 2009;16:861–868. PubMed PMC

Ermolenko DN, et al. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 2007;370:530–540. PubMed

Agrawal RK, et al. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J. Cell Biol. 2000;150:447–460. PubMed PMC

Graf M, et al. Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1. Nat. Commun. 2018;9:3053. PubMed PMC

Svidritskiy, E., Demo, G., Loveland, A. B., Xu, C. & Korostelev, A. A. Extensive ribosome and RF2 rearrangements during translation termination. Elife8, 10.7554/eLife.46850 (2019). PubMed PMC

Gao H, et al. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell. 2007;129:929–941. PubMed

Jin H, Kelley AC, Ramakrishnan V. Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc. Natl Acad. Sci. USA. 2011;108:15798–15803. doi: 10.1073/pnas.1112185108. PubMed DOI PMC

Zhou J, Lancaster L, Trakhanov S, Noller HF. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA. 2012;18:230–240. doi: 10.1261/rna.031187.111. PubMed DOI PMC

Loveland AB, Demo G, Grigorieff N, Korostelev AA. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature. 2017;546:113. doi: 10.1038/nature22397. PubMed DOI PMC

Ratje AH, et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature. 2010;468:713–716. doi: 10.1038/nature09547. PubMed DOI PMC

Agirrezabala X, et al. Ribosome rearrangements at the onset of translational bypassing. Sci. Adv. 2017;3:e1700147. doi: 10.1126/sciadv.1700147. PubMed DOI PMC

Bao C, et al. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. eLife. 2020;9:e55799. doi: 10.7554/eLife.55799. PubMed DOI PMC

Ramrath DJ, et al. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc. Natl Acad. Sci. USA. 2013;110:20964–20969. doi: 10.1073/pnas.1320387110. PubMed DOI PMC

Cornish PV, Ermolenko DN, Noller HF, Ha T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell. 2008;30:578–588. doi: 10.1016/j.molcel.2008.05.004. PubMed DOI PMC

Moazed D, Noller HF. Intermediate states in the movement of transfer RNA in the ribosome. Nature. 1989;342:142–148. doi: 10.1038/342142a0. PubMed DOI

Fu Z, et al. Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure. 2016;24:2092–2101. doi: 10.1016/j.str.2016.09.014. PubMed DOI PMC

Bao C, et al. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. Elife. 2020;9:e55799. PubMed PMC

Chan K-H, et al. Mechanism of ribosome rescue by alternative ribosome-rescue factor B. Nat. Commun. 2020;11:4106. PubMed PMC

Passos DO, et al. Analysis of Dom34 and its function in no-go decay. Mol. Biol. Cell. 2009;20:3025–3032. PubMed PMC

Guydosh NR, Green R. Dom34 rescues ribosomes in 3′ untranslated regions. Cell. 2014;156:950–962. PubMed PMC

Shoemaker CJ, Eyler DE, Green R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science. 2010;330:369–372. PubMed PMC

Demo G, et al. Mechanism of ribosome rescue by ArfA and RF2. Elife. 2017;6:e23687. PubMed PMC

Huter P, et al. Structural basis for ArfA-RF2-mediated translation termination on mRNAs lacking stop codons. Nature. 2017;541:546–549. PubMed

Ma C, et al. Mechanistic insights into the alternative translation termination by ArfA and RF2. Nature. 2017;541:550–553. PubMed

Zeng F, et al. Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome. Nature. 2017;541:554–557. PubMed PMC

James NR, Brown A, Gordiyenko Y, Ramakrishnan V. Translational termination without a stop codon. Science. 2016;354:1437–1440. PubMed PMC

Neubauer C, Gillet R, Kelley AC, Ramakrishnan V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science. 2012;335:1366–1369. PubMed PMC

Hilal T, et al. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution. Nat. Commun. 2016;7:13521. PubMed PMC

Shao S, et al. Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell. 2016;167:1229–1240.e1215. PubMed PMC

Zeng F, Jin H. Peptide release promoted by methylated RF2 and ArfA in nonstop translation is achieved by an induced-fit mechanism. RNA. 2016;22:49–60. PubMed PMC

Ivanova N, Pavlov MY, Felden B, Ehrenberg M. Ribosome rescue by tmRNA requires truncated mRNAs. J. Mol. Biol. 2004;338:33–41. PubMed

Guydosh NR, Green R. Translation of poly(A) tails leads to precise mRNA cleavage. RNA. 2017;23:749–761. PubMed PMC

Vaishya S, Kumar V, Gupta A, Siddiqi MI, Habib S. Polypeptide release factors and stop codon recognition in the apicoplast and mitochondrion of Plasmodium falciparum. Mol. Microbiol. 2016;100:1080–1095. PubMed

Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. PubMed

Kremer JR, Mastronarde DN, McIntosh JR. Computer VIsualization of Three-dimensional Image Data Using IMOD. J. Struct. Biol. 1996;116:71–76. PubMed

Grant T, Rohou A, Grigorieff N. cisTEM, user-friendly software for single-particle image processing. eLife. 2018;7:e35383. PubMed PMC

Lyumkis D, Brilot AF, Theobald DL, Grigorieff N. Likelihood-based classification of cryo-EM images using FREALIGN. J. Struct. Biol. 2013;183:377–388. PubMed PMC

Grigorieff N. Frealign: an exploratory tool for single-particle Cryo-EM. Methods Enzymol. 2016;579:191–226. PubMed PMC

Pettersen EF, et al. UCSF ChimeraΓÇöA visualization system for exploratory research and analysis. J. Computational Chem. 2004;25:1605–1612. PubMed

Delano, W. The PyMOL Molecular Graphics System, Version 1.8 (2015).

Svidritskiy E, Korostelev AA. Ribosome structure reveals preservation of active sites in the presence of a P-site wobble mismatch. Structure. 2015;23:2155–2161. PubMed PMC

Chapman M. Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function. Acta Crystallogr. Sect. A. 1995;51:69–80.

Korostelev A, Bertram R, Chapman MS. Simulated-annealing real-space refinement as a tool in model building. Acta Crystallogr. Sect. D. 2002;58:761–767. PubMed

Korostelev A, et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl Acad. Sci. USA. 2008;105:19684–19689. PubMed PMC

Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr. 2010;66:213–221. PubMed PMC

Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D. Biol. Crystallogr. 2010;66:12–21. PubMed PMC

Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Extensive ribosome and RF2 rearrangements during translation termination. Elife. 2019;12:e46850. doi: 10.7554/eLife.46850. PubMed DOI PMC

Jenner LB, Demeshkina N, Yusupova G, Yusupov M. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 2010;17:555–560. doi: 10.1038/nsmb.1790. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...