ArfB can displace mRNA to rescue stalled ribosomes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
F31 HL152650
NHLBI NIH HHS - United States
R01 GM106105
NIGMS NIH HHS - United States
R01 GM107465
NIGMS NIH HHS - United States
R35 GM127094
NIGMS NIH HHS - United States
PubMed
33144582
PubMed Central
PMC7641280
DOI
10.1038/s41467-020-19370-z
PII: 10.1038/s41467-020-19370-z
Knihovny.cz E-zdroje
- MeSH
- biokatalýza MeSH
- biologické modely MeSH
- dimerizace MeSH
- konformace proteinů MeSH
- messenger RNA genetika metabolismus ultrastruktura MeSH
- podjednotky ribozomu metabolismus MeSH
- proteiny z Escherichia coli chemie metabolismus ultrastruktura MeSH
- ribozomy metabolismus ultrastruktura MeSH
- stabilita RNA MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- messenger RNA MeSH
- proteiny z Escherichia coli MeSH
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
Central European Institute of Technology Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Zobrazit více v PubMed
Korostelev AA. Structural aspects of translation termination on the ribosome. RNA. 2011;17:1409–1421. doi: 10.1261/rna.2733411. PubMed DOI PMC
Dunkle JA, Cate JH. Ribosome structure and dynamics during translocation and termination. Annu. Rev. Biophys. 2010;39:227–244. doi: 10.1146/annurev.biophys.37.032807.125954. PubMed DOI
Ramakrishnan, V. Ribosomes: Structure, Function, and Dynamics (eds Rodnina, M., Wintermeyer, W. & Green, R.) 19–30 (Springer, 2011).
Rodnina, M. V. Translation in prokaryotes. Cold Spring Harb Perspect Biol10, 10.1101/cshperspect.a032664 (2018). PubMed PMC
Youngman EM, McDonald ME, Green R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev. Microbiol. 2008;62:353–373. doi: 10.1146/annurev.micro.61.080706.093323. PubMed DOI
Hayes CS, Keiler KC. Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett. 2010;584:413–419. doi: 10.1016/j.febslet.2009.11.023. PubMed DOI PMC
Keiler KC. Mechanisms of ribosome rescue in bacteria. Nat. Rev. Microbiol. 2015;13:285–297. doi: 10.1038/nrmicro3438. PubMed DOI
Ito K, et al. Nascentome analysis uncovers futile protein synthesis in Escherichia coli. PLoS ONE. 2011;6:e28413. doi: 10.1371/journal.pone.0028413. PubMed DOI PMC
Huter P, Muller C, Arenz S, Beckert B, Wilson DN. Structural basis for ribosome rescue in Bacteria. Trends Biochem. Sci. 2017;42:669–680. doi: 10.1016/j.tibs.2017.05.009. PubMed DOI
Kogure H, et al. Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ. Nucleic Acids Res. 2014;42:3152–3163. PubMed PMC
Kogure H, et al. Solution structure and siRNA-mediated knockdown analysis of the mitochondrial disease-related protein C12orf65. Proteins. 2012;80:2629–2642. PubMed
Richter R, et al. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. Embo J. 2010;29:1116–1125. PubMed PMC
Feaga HA, Quickel MD, Hankey-Giblin PA, Keiler KC. Human cells require non-stop ribosome rescue activity in mitochondria. PLoS Genet. 2016;12:e1005964. PubMed PMC
Greber BJ, et al. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature. 2014;505:515–519. PubMed
Gagnon MG, Seetharaman SV, Bulkley D, Steitz TA. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science. 2012;335:1370. PubMed PMC
Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res. 2011;39:1739–1748. PubMed PMC
Akabane S, Ueda T, Nierhaus KH, Takeuchi N. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLoS Genet. 2014;10:e1004616. PubMed PMC
Svidritskiy E, Korostelev AA. Mechanism of inhibition of translation termination by blasticidin S. J. Mol. Biol. 2018;430:591–593. PubMed PMC
Jenner L, Demeshkina N, Yusupova G, Yusupov M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat. Struct. Mol. Biol. 2010;17:1072–1078. PubMed
Yusupova GZ, Yusupov MM, Cate JHD, Noller HF. The path of messenger RNA through the ribosome. Cell. 2001;106:233–241. PubMed
Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. Structural basis for messenger RNA movement on the ribosome. Nature. 2006;444:391–394. PubMed
Adio, S. et al. Dynamics of ribosomes and release factors during translation termination in E. coli.Elife7, 10.7554/eLife.34252 (2018). PubMed PMC
Prabhakar A, Capece MC, Petrov A, Choi J, Puglisi JD. Post-termination ribosome intermediate acts as the gateway to ribosome recycling. Cell Rep. 2017;20:161–172. PubMed PMC
Sternberg SH, Fei J, Prywes N, McGrath KA, Gonzalez RL., Jr Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat. Struct. Mol. Biol. 2009;16:861–868. PubMed PMC
Ermolenko DN, et al. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 2007;370:530–540. PubMed
Agrawal RK, et al. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J. Cell Biol. 2000;150:447–460. PubMed PMC
Graf M, et al. Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1. Nat. Commun. 2018;9:3053. PubMed PMC
Svidritskiy, E., Demo, G., Loveland, A. B., Xu, C. & Korostelev, A. A. Extensive ribosome and RF2 rearrangements during translation termination. Elife8, 10.7554/eLife.46850 (2019). PubMed PMC
Gao H, et al. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell. 2007;129:929–941. PubMed
Jin H, Kelley AC, Ramakrishnan V. Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc. Natl Acad. Sci. USA. 2011;108:15798–15803. doi: 10.1073/pnas.1112185108. PubMed DOI PMC
Zhou J, Lancaster L, Trakhanov S, Noller HF. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA. 2012;18:230–240. doi: 10.1261/rna.031187.111. PubMed DOI PMC
Loveland AB, Demo G, Grigorieff N, Korostelev AA. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature. 2017;546:113. doi: 10.1038/nature22397. PubMed DOI PMC
Ratje AH, et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature. 2010;468:713–716. doi: 10.1038/nature09547. PubMed DOI PMC
Agirrezabala X, et al. Ribosome rearrangements at the onset of translational bypassing. Sci. Adv. 2017;3:e1700147. doi: 10.1126/sciadv.1700147. PubMed DOI PMC
Bao C, et al. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. eLife. 2020;9:e55799. doi: 10.7554/eLife.55799. PubMed DOI PMC
Ramrath DJ, et al. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc. Natl Acad. Sci. USA. 2013;110:20964–20969. doi: 10.1073/pnas.1320387110. PubMed DOI PMC
Cornish PV, Ermolenko DN, Noller HF, Ha T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell. 2008;30:578–588. doi: 10.1016/j.molcel.2008.05.004. PubMed DOI PMC
Moazed D, Noller HF. Intermediate states in the movement of transfer RNA in the ribosome. Nature. 1989;342:142–148. doi: 10.1038/342142a0. PubMed DOI
Fu Z, et al. Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure. 2016;24:2092–2101. doi: 10.1016/j.str.2016.09.014. PubMed DOI PMC
Bao C, et al. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. Elife. 2020;9:e55799. PubMed PMC
Chan K-H, et al. Mechanism of ribosome rescue by alternative ribosome-rescue factor B. Nat. Commun. 2020;11:4106. PubMed PMC
Passos DO, et al. Analysis of Dom34 and its function in no-go decay. Mol. Biol. Cell. 2009;20:3025–3032. PubMed PMC
Guydosh NR, Green R. Dom34 rescues ribosomes in 3′ untranslated regions. Cell. 2014;156:950–962. PubMed PMC
Shoemaker CJ, Eyler DE, Green R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science. 2010;330:369–372. PubMed PMC
Demo G, et al. Mechanism of ribosome rescue by ArfA and RF2. Elife. 2017;6:e23687. PubMed PMC
Huter P, et al. Structural basis for ArfA-RF2-mediated translation termination on mRNAs lacking stop codons. Nature. 2017;541:546–549. PubMed
Ma C, et al. Mechanistic insights into the alternative translation termination by ArfA and RF2. Nature. 2017;541:550–553. PubMed
Zeng F, et al. Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome. Nature. 2017;541:554–557. PubMed PMC
James NR, Brown A, Gordiyenko Y, Ramakrishnan V. Translational termination without a stop codon. Science. 2016;354:1437–1440. PubMed PMC
Neubauer C, Gillet R, Kelley AC, Ramakrishnan V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science. 2012;335:1366–1369. PubMed PMC
Hilal T, et al. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution. Nat. Commun. 2016;7:13521. PubMed PMC
Shao S, et al. Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell. 2016;167:1229–1240.e1215. PubMed PMC
Zeng F, Jin H. Peptide release promoted by methylated RF2 and ArfA in nonstop translation is achieved by an induced-fit mechanism. RNA. 2016;22:49–60. PubMed PMC
Ivanova N, Pavlov MY, Felden B, Ehrenberg M. Ribosome rescue by tmRNA requires truncated mRNAs. J. Mol. Biol. 2004;338:33–41. PubMed
Guydosh NR, Green R. Translation of poly(A) tails leads to precise mRNA cleavage. RNA. 2017;23:749–761. PubMed PMC
Vaishya S, Kumar V, Gupta A, Siddiqi MI, Habib S. Polypeptide release factors and stop codon recognition in the apicoplast and mitochondrion of Plasmodium falciparum. Mol. Microbiol. 2016;100:1080–1095. PubMed
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. PubMed
Kremer JR, Mastronarde DN, McIntosh JR. Computer VIsualization of Three-dimensional Image Data Using IMOD. J. Struct. Biol. 1996;116:71–76. PubMed
Grant T, Rohou A, Grigorieff N. cisTEM, user-friendly software for single-particle image processing. eLife. 2018;7:e35383. PubMed PMC
Lyumkis D, Brilot AF, Theobald DL, Grigorieff N. Likelihood-based classification of cryo-EM images using FREALIGN. J. Struct. Biol. 2013;183:377–388. PubMed PMC
Grigorieff N. Frealign: an exploratory tool for single-particle Cryo-EM. Methods Enzymol. 2016;579:191–226. PubMed PMC
Pettersen EF, et al. UCSF ChimeraΓÇöA visualization system for exploratory research and analysis. J. Computational Chem. 2004;25:1605–1612. PubMed
Delano, W. The PyMOL Molecular Graphics System, Version 1.8 (2015).
Svidritskiy E, Korostelev AA. Ribosome structure reveals preservation of active sites in the presence of a P-site wobble mismatch. Structure. 2015;23:2155–2161. PubMed PMC
Chapman M. Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function. Acta Crystallogr. Sect. A. 1995;51:69–80.
Korostelev A, Bertram R, Chapman MS. Simulated-annealing real-space refinement as a tool in model building. Acta Crystallogr. Sect. D. 2002;58:761–767. PubMed
Korostelev A, et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl Acad. Sci. USA. 2008;105:19684–19689. PubMed PMC
Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr. 2010;66:213–221. PubMed PMC
Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D. Biol. Crystallogr. 2010;66:12–21. PubMed PMC
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Extensive ribosome and RF2 rearrangements during translation termination. Elife. 2019;12:e46850. doi: 10.7554/eLife.46850. PubMed DOI PMC
Jenner LB, Demeshkina N, Yusupova G, Yusupov M. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 2010;17:555–560. doi: 10.1038/nsmb.1790. PubMed DOI