A Novel UHPLC-MS Method Targeting Urinary Metabolomic Markers for Autism Spectrum Disorder
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-0045
Agentúra na Podporu Výskumu a Vývoja
15-0085
Agentúra na Podporu Výskumu a Vývoja
2/0088/18
Ministerstvo skolstva SR
2018/24-SAV-2
Ministrerstvo zdravotnictva SR
CRP/19/016
International Centre for Genetic Engineering and Biotechnology
PubMed
33147863
PubMed Central
PMC7693535
DOI
10.3390/metabo10110443
PII: metabo10110443
Knihovny.cz E-zdroje
- Klíčová slova
- autism spectrum disorder, gut microbiota, liquid chromatography, mass spectrometry, metabolomics, oxidative stress,
- Publikační typ
- časopisecké články MeSH
Autism spectrum disorder is a heterogeneous neurodevelopmental disease. Currently, no biomarker of this disease is known. Diagnosis is performed through observation, standardized behavioral scales, and interviews with parents. In practice, diagnosis is often delayed to the average age of four years or even more which adversely affects a child's perspective. A laboratory method allowing to detect the disorder at earlier stages is of a great need, as this could help the patients to start with treatment at a younger age, even prior to the clinical diagnosis. Recent evidence indicates that metabolomic markers should be considered as diagnostic markers, also serving for further differentiation and characterization of different subgroups of the autism spectrum. In this study, we developed an ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry method for the simultaneous determination of six metabolites in human urine. These metabolites, namely methylguanidine, N-acetyl arginine, inosine, indole-3-acetic acid, indoxyl sulfate and xanthurenic acid were selected as potential biomarkers according to prior metabolomic studies. The analysis was carried out by means of reversed-phase liquid chromatography with gradient elution. Separation of the metabolites was performed on a Phenomenex Luna® Omega Polar C18 (100 × 1.0 mm, 1.6 µm) column at a flow rate of 0.15 mL/min with acetonitrile/water 0.1% formic acid aqueous as the mobile phase. The analysis was performed on a group of children with autism spectrum disorder and age-matched controls. In school children, we have detected disturbances in the levels of oxidative stress markers connected to arginine and purine metabolism, namely methylguanidine and N-acetylargine. Also, products of gut bacteria metabolism, namely indoxyl sulfate and indole-3-acetic acid, were found to be elevated in the patients' group. We can conclude that this newly developed method is fast, sensitive, reliable, and well suited for the quantification of proposed markers.
Zobrazit více v PubMed
Muhle R.A., Reed H.E., Stratigos K.A., Veenstra-VanderWeele J. The Emerging Clinical Neuroscience of Autism Spectrum Disorder. JAMA Psychiatry. 2018;75:514–523. doi: 10.1001/jamapsychiatry.2017.4685. PubMed DOI
Fakhoury M. Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int. J. Dev. Neurosci. 2015;43:70–77. doi: 10.1016/j.ijdevneu.2015.04.003. PubMed DOI
Fombonne E. Epidemiological controversies in autism. Swiss. Arch. Neurol. Psychiatry Psychother. 2020;171:3–5. doi: 10.4414/sanp.2020.03084. DOI
Perryman T., Watson L.R., Chumney F. Predictors of the age of autism spectrum disorder diagnosis: A North Carolina Cohort. Autism Dev. Lang. Impair. 2018;3:1–10. doi: 10.1177/2396941517751892. DOI
Shen L.-M., Liu X., Zhang H., Lin J., Feng C., Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin. Chim. Acta. 2020;502:41–54. doi: 10.1016/j.cca.2019.12.009. PubMed DOI
Want E.J., Wilson I.D., Gika H.G., Theodoridis G., Plumb R.S., Shockcor J.P., Holmes E., Nicholson J.K. Global metabolic profiling procedures for urine using UPLC–MS. Nat. Protoc. 2010;5:1005–1018. doi: 10.1038/nprot.2010.50. PubMed DOI
Ruggeri B., Sarkans U., Schumann G., Persico A.M. Biomarkers in autism spectrum disorder: The old and the new. Psychopharmacology. 2014;231:1201–1216. doi: 10.1007/s00213-013-3290-7. PubMed DOI
Yan M., Xu G. Current and future perspectives of functional metabolomics in disease studies–A review. Anal. Chim. Acta. 2018;1037:41–54. doi: 10.1016/j.aca.2018.04.006. PubMed DOI
Diémé B., Mavel S., Blasco H., Tripi G., Bonnet-Brilhault F., Malvy J., Bocca C., Andres C.R., Nadal-Desbarats L., Emond P. Metabolomics Study of Urine in Autism Spectrum Disorders Using a Multiplatform Analytical Methodology. J. Proteome Res. 2015;14:5273–5282. doi: 10.1021/acs.jproteome.5b00699. PubMed DOI
Frye R.E., Slattery J. The potential role of nitrous oxide in the etiology of autism spectrum disorder. Transl. Psychiatry. 2016;6:e812. doi: 10.1038/tp.2016.89. PubMed DOI PMC
Yap I.K.S., Angley M., Veselkov K.A., Holmes E., Lindon J.C., Nicholson J.K. Urinary Metabolic Phenotyping Differentiates Children with Autism from Their Unaffected Siblings and Age-Matched Controls. J. Proteome Res. 2010;9:2996–3004. doi: 10.1021/pr901188e. PubMed DOI
Ming X., Stein T.P., Barnes V., Rhodes N., Guo L. Metabolic Perturbance in Autism Spectrum Disorders: A Metabolomics Study. J. Proteome Res. 2012;11:5856–5862. doi: 10.1021/pr300910n. PubMed DOI
Emond P., Mavel S., Aïdoud N., Nadal-Desbarats L., Montigny F., Bonnet-Brilhault F., Barthélémy C., Merten M., Sarda P., Laumonnier F., et al. GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal. Bioanal. Chem. 2013;405:5291–5300. doi: 10.1007/s00216-013-6934-x. PubMed DOI
Gevi F., Zolla L., Gabriele S., Persico A.M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism. 2016;7:1–11. doi: 10.1186/s13229-016-0109-5. PubMed DOI PMC
Bitar T., Mavel S., Emond P., Nadal-Desbarats L., Lefèvre A., Mattar H., Soufia M., Blasco H., Vourc’H P., Hleihel W., et al. Identification of metabolic pathway disturbances using multimodal metabolomics in autistic disorders in a Middle Eastern population. J. Pharm. Biomed. Anal. 2018;152:57–65. doi: 10.1016/j.jpba.2018.01.007. PubMed DOI
Xiong X., Liu D., He W., Sheng X., Zhou W., Xie N., Liang H., Zeng T., Li T., Wang Y. Identification of gender-related metabolic disturbances in autism spectrum disorders using urinary metabolomics. Int. J. Biochem. Cell Biol. 2019;115:105594. doi: 10.1016/j.biocel.2019.105594. PubMed DOI
Tachikawa M., Hosoya K.-I. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: Relevance to neural disorders. Fluids Barriers CNS. 2011;8:13. doi: 10.1186/2045-8118-8-13. PubMed DOI PMC
Yao J.K., Dougherty G.G., Jr., Reddy R.D., Keshavan M.S., Montrose D.M., Matson W.R., McEvoy J., Kaddurah-Daouk R. Homeostatic Imbalance of Purine Catabolism in First-Episode Neuroleptic-Naïve Patients with Schizophrenia. PLoS ONE. 2010;5:e9508. doi: 10.1371/journal.pone.0009508. PubMed DOI PMC
Damodaran L.P.M., Arumugam G. Urinary oxidative stress markers in children with autism. Redox Rep. 2011;16:216–222. doi: 10.1179/1351000211Y.0000000012. PubMed DOI PMC
Bent S., Lawton B., Warren T., Widjaja F., Dang K., Fahey J.W., Cornblatt B., Kinchen J.M., Delucchi K., Hendren R.L. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol. Autism. 2018;9:35. doi: 10.1186/s13229-018-0218-4. PubMed DOI PMC
Anderson G.M. Autism Biomarkers: Challenges, Pitfalls and Possibilities. J. Autism Dev. Disord. 2015;45:1103–1113. doi: 10.1007/s10803-014-2225-4. PubMed DOI
Ghanizadeh A., Akhondzadeh S., Hormozi M., Makarem A., Abotorabi-Zarchi M., Firoozabadi A. Glutathione-Related Factors and Oxidative Stress in Autism, A Review. Curr. Med. Chem. 2012;19:4000–4005. doi: 10.2174/092986712802002572. PubMed DOI
Chauhan A., Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13:171–181. doi: 10.1016/j.pathophys.2006.05.007. PubMed DOI
Bjørklund G., Meguid N.A., El-Bana M.A., Tinkov A.A., Saad K., Dadar M., Hemimi M., Skalny A.V., Hosnedlová B., Kizek R., et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020;57:2314–2332. doi: 10.1007/s12035-019-01742-2. PubMed DOI
McElhanon B.O., McCracken C., Karpen S., Sharp W.G. Gastrointestinal Symptoms in Autism Spectrum Disorder: A Meta-analysis. Pediatrics. 2014;133:872–883. doi: 10.1542/peds.2013-3995. PubMed DOI
Felice V.D., O’Mahony S.M. The microbiome and disorders of the central nervous system. Pharmacol. Biochem. Behav. 2017;160:1–13. doi: 10.1016/j.pbb.2017.06.016. PubMed DOI
Li Q., Zhou J.-M. The microbiota–gut–brain axis and its potential therapeutic role in autism spectrum disorder. Neurosciences. 2016;324:131–139. doi: 10.1016/j.neuroscience.2016.03.013. PubMed DOI
Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., Jousson O., Leoncini S., Renzi D., Calabrò A., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:1–11. doi: 10.1186/s40168-017-0242-1. PubMed DOI PMC
Watanabe K., Watanabe T., Nakayama M. Cerebro-renal interactions: Impact of uremic toxins on cognitive function. NeuroToxicology. 2014;44:184–193. doi: 10.1016/j.neuro.2014.06.014. PubMed DOI
Lord C., Risi S., Lambrecht L., Cook E.H., Jr., Leventhal B., DiLavore P.C., Pickles A., Rutter M. The Autism Diagnostic Observation Schedule—Generic: A Standard Measure of Social and Communication Deficits Associated with the Spectrum of Autism. J. Autism Dev. Disord. 2000;30:205–223. doi: 10.1023/A:1005592401947. PubMed DOI
Lord C., Rutter M., Le Couteur A. Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994;24:659–685. doi: 10.1007/BF02172145. PubMed DOI
R Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.
Wilcox R. Introduction to Robust Estimation and Hypothesis Testin. 3rd ed. Academic Press; Cambridge, MA, USA: 2011.
Welch B.L. The generalization of ‘student’s’ problem when several different population varlances are involved. Biometrics. 1947;34:28–35. doi: 10.1093/biomet/34.1-2.28. PubMed DOI