A Randomized Trial Comparing Short versus Prolonged Hemostasis with Rescue Recanalization by Ipsilateral Ulnar Artery Compression: Impact on Radial Artery Occlusion-The RESCUE-RAO Trial

. 2020 ; 2020 () : 7928961. [epub] 20201023

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid33149729

BACKGROUND: Despite the enormous benefits of radial access, this route is associated with a risk of radial artery occlusion (RAO). OBJECTIVE: We compared the incidence of RAO in patients undergoing transradial coronary angiography and intervention after short versus prolonged hemostasis protocol. Also we assessed the efficacy of rescue 1-hour ipsilateral ulnar artery compression if RAO was observed after hemostasis. Material and Methods. Patients referred for elective transradial coronary procedures were eligible. After 6 F radial sheath removal, patients were randomized to short (3 hours) (n = 495) or prolonged (8 hours) (n = 503) hemostasis and a simple bandage was placed over the puncture site. After hemostasis was completed, oximetry plethysmography was used to assess the patency of the radial artery. RESULTS: One thousand patients were randomized. Baseline characteristics were similar between both groups with average age 61.4 ± 9.4 years (71% male) and PCI performed on half of the patients. The RAO rate immediately after hemostasis was 3.2% in the short hemostasis group and 10.1% in the prolonged group (p < 0.001). Rescue recanalization was successful only in the short group in 56.2% (11/19); at hospital discharge, RAO rates were 1.4% in the short group and 10.1% in the prolonged group (p < 0.001). CONCLUSION: Shorter hemostasis was associated with significantly less RAO compared to prolonged hemostasis. Rescue radial artery recanalization was effective in > 50%, but only in the short hemostasis group.

Zobrazit více v PubMed

Chase A. J., Fretz E. B., Warburton W. P., et al. Association of the arterial access site at angioplasty with transfusion and mortality: the M.O.R.T.A.L study (Mortality benefit of Reduced Transfusion after percutaneous coronary intervention via the Arm or Leg) Heart. 2008;94(8):1019–1025. doi: 10.1136/hrt.2007.136390. PubMed DOI

Kugelmass A. D., Cohen D. J., Brown P. P., Simon A. W., Becker E. R., Culler S. D. Hospital resources consumed in treating complications associated with percutaneous coronary interventions. The American Journal of Cardiology. 2006;97(3):322–327. doi: 10.1016/j.amjcard.2005.08.047. PubMed DOI

Ferrante G., Rao S. V., Jüni P., et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease. JACC: Cardiovascular Interventions. 2016;9(14):1419–1434. doi: 10.1016/j.jcin.2016.04.014. PubMed DOI

Rathore S., Stables R. H., Pauriah M., et al. A randomized comparison of TR band and radistop hemostatic compression devices after transradial coronary intervention. Catheterization and Cardiovascular Interventions. 2010;76(5):660–667. doi: 10.1002/ccd.22615. PubMed DOI

Plante S., Cantor W. J., Goldman L., et al. Comparison of bivalirudin versus heparin on radial artery occlusion after transradial catheterization. Catheterization and Cardiovascular Interventions. 2010;76(5):654–658. doi: 10.1002/ccd.22610. PubMed DOI

Hahalis G., Aznaouridis K., Tsigkas G., et al. Radial artery and ulnar artery occlusions following coronary procedures and the impact of anticoagulation: ARTEMIS (radial and ulnar ARTE ry occlusion Meta-analys IS ) systematic review and meta‐analysis. Journal of the American Heart Association. 2017;6(8) doi: 10.1161/JAHA.116.005430.e005430 PubMed DOI PMC

Bertrand O. F., Rao S. V., Pancholy S., et al. Transradial approach for coronary angiography and interventions. JACC: Cardiovascular Interventions. 2010;3(10):1022–1031. doi: 10.1016/j.jcin.2010.07.013. PubMed DOI

Ognerubov D. V., Provatorov S. I., Tereshchenko A. S., et al. Rate of complications at early removal of compression bandage after transradial coronary angiography. Kardiologiia. 2019;59(1):79–83. doi: 10.18087/cardio.2019.1.10218. PubMed DOI

Uhlemann M., Gielen S., Linke A., et al. The Leipzig prospective vascular ultrasound registry in radial artery catheterization. European Heart Journal. 2012;32:p. 955. doi: 10.1016/j.jcin.2011.08.011. PubMed DOI

Chim H., Bakri K., Moran S. L. Complications related to radial artery occlusion, radial artery harvest, and arterial lines. Hand Clinics. 2015;31(1):93–100. doi: 10.1016/j.hcl.2014.09.010. PubMed DOI

Aykan A. Ç., Gökdeniz T., Gül I., et al. Comparison of low dose versus standard dose heparin for radial approach in elective coronary angiography? International Journal of Cardiology. 2015;187:389–392. doi: 10.1016/j.ijcard.2015.03.314. PubMed DOI

Dangoisse V., Guédès A., Chenu P., et al. Usefulness of a gentle and short hemostasis using the transradial band device after transradial access for percutaneous coronary angiography and interventions to reduce the radial artery occlusion rate (from the Prospective and Randomized CRASOC I, II, and III Studies) The American Journal of Cardiology. 2017;120(3):374–379. doi: 10.1016/j.amjcard.2017.04.037. PubMed DOI

Barbeau G. R., Arsenault F., Dugas L., Simard S., Larivière M. M. Evaluation of the ulnopalmar arterial arches with pulse oximetry and plethysmography: comparison with the Allen’s test in 1010 patients. American Heart Journal. 2004;147(3):489–493. doi: 10.1016/j.ahj.2003.10.038. PubMed DOI

Bertrand O. F. Acute forearm muscle swelling post transradial catheterization and compartment syndrome: prevention is better than treatment! Catheterization and Cardiovascular Interventions. 2010;75(3):366–368. doi: 10.1002/ccd.22448. PubMed DOI

Pancholy S., Coppola J., Patel T., Roke-Thomas M. Prevention of radial artery occlusion-patent hemostasis evaluation trial (PROPHET study): a randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheterization and Cardiovascular Interventions. 2008;72(3):335–340. doi: 10.1002/ccd.21639. PubMed DOI

Rashid M., Kwok C. S., Pancholy S, et al. Radial artery occlusion after transradial interventions: a systematic review and meta-Analysis. Journal of the American Heart Association. 2016;5(1) doi: 10.1161/jaha.115.002686.e002686 PubMed DOI PMC

Pancholy S. B., Bernat I., Bertrand O. F., Patel T. M. Prevention of radial artery occlusion after transradial catheterization. JACC: Cardiovascular Interventions. 2016;9(19):1992–1999. doi: 10.1016/j.jcin.2016.07.020. PubMed DOI

Dharma S., Kedev S., Patel T., Rao S. V., Gilchrist I. C. Different spasmolytic regimens (nitroglycerin vs verapamil) and the incidence of radial artery occlusion after transradial catheterization. Journal of Invasive Cardiology. 2018 Dec;30(12):461–464. PubMed

Pocock S. J. Clinical Trials: A Practical Approach. Hoboken, NJ, USA: Wiley; 1983.

Aminian A., Saito S., Takahashi A., et al. Impact of sheath size and hemostasis time on radial artery patency after transradial coronary angiography and intervention in Japanese and non-Japanese patients: a substudy from RAP and BEAT (Radial Artery Patency and Bleeding, Efficacy, Adverse lini) randomized multicenter trial. Catheterization and Cardiovascular Interventions. 2018;92:1–8. doi: 10.1002/ccd.27526. PubMed DOI PMC

Bi X.-L., Fu X.-H., Gu X.-S., et al. Influence of puncture site on radial artery occlusion after transradial coronary intervention. Chinese Medical Journal. 2016;129(8):898–902. doi: 10.4103/0366-6999.179795. PubMed DOI PMC

Tian J., Chu Y.-S., Sun J., Jiang T.-M. Ulnar artery compression. Chinese Medical Journal. 2015;128(6):795–798. doi: 10.4103/0366-6999.152639. PubMed DOI PMC

Nagai S., Abe S., Sato T., et al. Ultrasonic assessment of vascular complications in coronary angiography and angioplasty after transradial approach. The American Journal of Cardiology. 1999;83(2):180–186. doi: 10.1016/s0002-9149(98)00821-2. PubMed DOI

Zankl A. R., Andrassy M., Volz C., et al. Radial artery thrombosis following transradial coronary angiography: incidence and rationale for treatment of symptomatic patients with low-molecular-weight heparins. Clinical Research in Cardiology. 2010;99(12):841–847. doi: 10.1007/s00392-010-0197-8. PubMed DOI

Hirsh J., Raschke R. Heparin and low-molecular-weight heparin. Chest. 2004;126(3):188S–203S. doi: 10.1378/chest.126.3_suppl.188s. PubMed DOI

Koutouzis M. J., Maniotis C. D., Avdikos G., Tsoumeleas A., Andreou C., Kyriakides Z. S. ULnar artery Transient compression facilitating Radial Artery patent hemostasis (ULTRA): a novel technique to reduce radial artery occlusion after transradial coronary catheterization. Journal of Invasive Cardiology. 2016;28:451–454. PubMed

Bernat I., Bertrand O. F., Rokyta R., et al. Efficacy and safety of transient ulnar artery compression to recanalize acute radial artery occlusion after transradial catheterization. The American Journal of Cardiology. 2011;107(11):1698–1701. doi: 10.1016/j.amjcard.2011.01.056. PubMed DOI

Pancholy S. B. Transradial access in an occluded radial artery: new technique. Journal of Invasive Cardiology. 2007;19:541–544. PubMed

Bernat I., Aminian A. Pancholy S., et al. “Best practices for the prevention of radial artery occlusion after transradial diagnostic angiography and intervention. JACC: Cardiovascular Interventions. 2019;12(22):2235–2246. doi: 10.1016/j.jcin.2019.07.043. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...