Magnetizing lead-free halide double perovskites
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články
PubMed
33158858
PubMed Central
PMC7673701
DOI
10.1126/sciadv.abb5381
PII: 6/45/eabb5381
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.
Department of Chemistry KTH Royal Institute of Technology SE 10044 Stockholm Sweden
Department of Chemistry Northwestern University Evanston IL 60208 USA
Department of Physical Science Osaka Prefecture University Sakai Osaka 599 8531 Japan
Department of Physics Chemistry and Biology Linköping University Linköping SE 581 83 Sweden
Japan Synchrotron Radiation Research Institute SPring 8 Sayo Hyogo 679 5198 Japan
Materials Science Division Argonne National Laboratory Argonne IL 60439 USA
Zobrazit více v PubMed
Kojima A., Teshima K., Shirai Y., Miyasaka T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). PubMed
Bai S., Da P., Li C., Wang Z., Yuan Z., Fu F., Kawecki M., Liu X., Sakai N., Wang J. T.-W., Huettner S., Buecheler S., Fahlman M., Gao F., Snaith H. J., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). PubMed
Wang N., Cheng L., Ge R., Zhang S., Miao Y., Zou W., Yi C., Sun Y., Cao Y., Yang R., Wei Y., Guo Q., Ke Y., Yu M., Jin Y., Liu Y., Ding Q., Di D., Yang L., Xing G., Tian H., Jin C., Gao F., Friend R. H., Wang J., Huang W., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).
Xu W., Hu Q., Bai S., Bao C., Miao Y., Yuan Z., Borzda T., Barker A. J., Tyukalova E., Hu Z., Kawecki M., Wang H., Yan Z., Liu X., Shi X., Uvdal K., Fahlman M., Zhang W., Duchamp M., Liu J.-M., Petrozza A., Wang J., Liu L.-M., Huang W., Gao F., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019).
Zhu H., Fu Y., Meng F., Wu X., Gong Z., Ding Q., Gustafsson M. V., Trinh M. T., Jin S., Zhu X.-Y., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015). PubMed
Lin Q., Armin A., Burn P. L., Meredith P., Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015).
Chen Q., Wu J., Ou X., Huang B., Almutlaq J., Zhumekenov A. A., Guan X., Han S., Liang L., Yi Z., Li J., Xie X., Wang Y., Li Y., Fan D., Teh D. B. L., All A. H., Mohammed O. F., Bakr O. M., Wu T., Bettinelli M., Yang H., Huang W., Liu X., All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). PubMed
Odenthal P., Talmadge W., Gundlach N., Wang R., Zhang C., Sun D., Yu Z.-G., Vardeny Z. V., Li Y. S., Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).
Zhang C., Sun D., Sheng C.-X., Zhai Y. X., Mielczarek K., Zakhidov A., Vardeny Z. V., Magnetic field effects in hybrid perovskite devices. Nat. Phys. 11, 427–434 (2015).
Giovanni D., Ma H., Chua J., Grätzel M., Ramesh R., Mhaisalkar S., Mathews N., Sum T. C., Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015). PubMed
Kepenekian M., Robles R., Katan C., Sapori D., Pedesseau L., Even J., Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: From basics to devices. ACS Nano 9, 11557–11567 (2015). PubMed
Niesner D., Wilhelm M., Levchuk I., Osvet A., Shrestha S., Batentschuk M., Brabec C., Fauster T., Giant Rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016). PubMed
Kepenekian M., Even J., Rashba and Dresselhaus couplings in halide perovskites: Accomplishments and opportunities for spintronics and spin–orbitronics. J. Phys. Chem. Lett. 8, 3362–3370 (2017). PubMed
Hsiao Y.-C., Wu T., Li M., Hu B., Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv. Mater. 27, 2899–2906 (2015). PubMed
Pulizzi F., Spintronics. Nat. Mater. 11, 367 (2012). PubMed
Long G., Jiang C., Sabatini R., Yang Z., Wei M., Quan L. N., Liang Q., Rasmita A., Askerka M., Walters G., Gong X., Xing J., Wen X., Quintero-Bermudez R., Yuan H., Xing G., Wang X. R., Song D., Voznyy O., Zhang M., Hoogland S., Gao W., Xiong Q., Sargent E. H., Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).
Wang J., Zhang C., Liu H., McLaughlin R., Zhai Y., Vardeny S. R., Liu X., McGill S., Semenov D., Guo H., Tsuchikawa R., Deshpande V. V., Sun D., Vardeny Z. V., Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019). PubMed PMC
Náfrádi B., Szirmai P., Spina M., Lee H., Yazyev O. V., Arakcheeva A., Chernyshov D., Gibert M., Forró L., Horváth E., Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3. Nat. Commun. 7, 13406 (2016). PubMed PMC
Cai B., Chen X., Xie M., Zhang S., Liu X., Yang J., Zhou W., Guo S., Zeng H., A class of Pb-free double perovskite halide semiconductors with intrinsic ferromagnetism, large spin splitting and high Curie temperature. Mater. Horiz. 5, 961–968 (2018).
Ning W., Wang F., Wu B., Lu J., Yan Z., Liu X., Tao Y., Liu J.-M., Huang W., Fahlman M., Hultman L., Sum T. C., Gao F., Long electron–hole diffusion length in high-quality lead-free double perovskite films. Adv. Mater. 30, e1706246 (2018). PubMed
Ning W., Zhao X.-G., Klarbring J., Bai S., Ji F., Wang F., Simak S. I., Tao Y., Ren X.-M., Zhang L., Huang W., Abrikosov I. A., Gao F., Thermochromic lead-free halide double perovskites. Adv. Funct. Mater. 29, 1807375 (2019).
Shannon R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).
Vegard L., Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Physik 5, 17–26 (1921).
Zheng F., Pérez-Dieste V., McChesney J. L., Luk Y.-Y., Abbott N. L., Himpsel F. J., Detection and switching of the oxidation state of Fe in a self-assembled monolayer. Surf. Sci. 587, L191–L196 (2005).
J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bombden, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics Division, Perkin-Elmer Corporation, 1992), pp. 80–81.
Petříček V., Dušek M., Palatinus L., Crystallographic computing system JANA2006: General features. Z. Kristallogr. Cryst. Mater. 229, 345–352 (2014).
Schade L., Wright A. D., Johnson R. D., Dollmann M., Wenger B., Nayak P. K., Prabhakaran D., Herz L. M., Nicholas R., Snaith H. J., Radaelli P. G., Structural and optical properties of Cs2AgBiBr6 double perovskite. ACS Energy Lett. 4, 299–305 (2019).
Ishii Y., Wickramasinghe N. P., Chimon S., A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning. J. Am. Chem. Soc. 125, 3438–3439 (2003). PubMed
Holmberg R. J., Burns T., Greer S. M., Kobera L., Stoian S. A., Korobkov I., Hill S., Bryce D. L., Woo T. K., Murugesu M., Intercalation of coordinatively unsaturated FeIII ion within interpenetrated metal–organic framework MOF-5. Chem. 22, 7711–7715 (2016). PubMed
Kobera L., Abbrent S., Holcova L., Urbanova M., Kolousek D., Dousova B., Brus J., Spying on Fe ions and their role in modified aluminosilicates during the sorption of anions using solid-state NMR spectroscopy. Micropor. Mesopor. Mat. 241, 115–122 (2017).
Kubicki D. J., Prochowicz D., Pinon A., Stevanato G., Hofstetter A., Zakeeruddin S. M., Grätzel M., Emsley L., Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from 133Cs and 1H NMR relaxation enhancement. J. Mater. Chem. A 7, 2326–2333 (2019).
Kawaguchi S., Takemoto M., Osaka K., Nishibori E., Moriyoshi C., Kubota Y., Kuroiwa Y., Sugimoto K., High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 88, 085111 (2017). PubMed
Haase A. R., Kerber M. A., Kessler D., Kronenbitter J., Krüger H., Lutz O., Müller M., Nolle A., Nuclear magnetic shielding and quadrupole coupling of 133Cs in cesium salt powders. Z. Naturforsch. 32, 952–956 (1977).
Hahn E. L., Spin Echoes. Phys. Rev. 80, 580–594 (1950).
Hamaed H., Laschuk M. W., Terskikh V. V., Schurko R. W., Application of solid-state 209Bi NMR to the structural characterization of bismuth-containing materials. J. Am. Chem. Soc. 131, 8271–8279 (2009). PubMed
Brus J., Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 16, 151–160 (2000). PubMed
Palladium-Doped Cs2AgBiBr6 with 1300 nm Near-Infrared Photoresponse