Magnetizing lead-free halide double perovskites

. 2020 Nov ; 6 (45) : . [epub] 20201106

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33158858

Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.

Zobrazit více v PubMed

Kojima A., Teshima K., Shirai Y., Miyasaka T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). PubMed

Bai S., Da P., Li C., Wang Z., Yuan Z., Fu F., Kawecki M., Liu X., Sakai N., Wang J. T.-W., Huettner S., Buecheler S., Fahlman M., Gao F., Snaith H. J., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). PubMed

Wang N., Cheng L., Ge R., Zhang S., Miao Y., Zou W., Yi C., Sun Y., Cao Y., Yang R., Wei Y., Guo Q., Ke Y., Yu M., Jin Y., Liu Y., Ding Q., Di D., Yang L., Xing G., Tian H., Jin C., Gao F., Friend R. H., Wang J., Huang W., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).

Xu W., Hu Q., Bai S., Bao C., Miao Y., Yuan Z., Borzda T., Barker A. J., Tyukalova E., Hu Z., Kawecki M., Wang H., Yan Z., Liu X., Shi X., Uvdal K., Fahlman M., Zhang W., Duchamp M., Liu J.-M., Petrozza A., Wang J., Liu L.-M., Huang W., Gao F., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019).

Zhu H., Fu Y., Meng F., Wu X., Gong Z., Ding Q., Gustafsson M. V., Trinh M. T., Jin S., Zhu X.-Y., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015). PubMed

Lin Q., Armin A., Burn P. L., Meredith P., Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015).

Chen Q., Wu J., Ou X., Huang B., Almutlaq J., Zhumekenov A. A., Guan X., Han S., Liang L., Yi Z., Li J., Xie X., Wang Y., Li Y., Fan D., Teh D. B. L., All A. H., Mohammed O. F., Bakr O. M., Wu T., Bettinelli M., Yang H., Huang W., Liu X., All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). PubMed

Odenthal P., Talmadge W., Gundlach N., Wang R., Zhang C., Sun D., Yu Z.-G., Vardeny Z. V., Li Y. S., Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).

Zhang C., Sun D., Sheng C.-X., Zhai Y. X., Mielczarek K., Zakhidov A., Vardeny Z. V., Magnetic field effects in hybrid perovskite devices. Nat. Phys. 11, 427–434 (2015).

Giovanni D., Ma H., Chua J., Grätzel M., Ramesh R., Mhaisalkar S., Mathews N., Sum T. C., Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015). PubMed

Kepenekian M., Robles R., Katan C., Sapori D., Pedesseau L., Even J., Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: From basics to devices. ACS Nano 9, 11557–11567 (2015). PubMed

Niesner D., Wilhelm M., Levchuk I., Osvet A., Shrestha S., Batentschuk M., Brabec C., Fauster T., Giant Rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016). PubMed

Kepenekian M., Even J., Rashba and Dresselhaus couplings in halide perovskites: Accomplishments and opportunities for spintronics and spin–orbitronics. J. Phys. Chem. Lett. 8, 3362–3370 (2017). PubMed

Hsiao Y.-C., Wu T., Li M., Hu B., Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv. Mater. 27, 2899–2906 (2015). PubMed

Pulizzi F., Spintronics. Nat. Mater. 11, 367 (2012). PubMed

Long G., Jiang C., Sabatini R., Yang Z., Wei M., Quan L. N., Liang Q., Rasmita A., Askerka M., Walters G., Gong X., Xing J., Wen X., Quintero-Bermudez R., Yuan H., Xing G., Wang X. R., Song D., Voznyy O., Zhang M., Hoogland S., Gao W., Xiong Q., Sargent E. H., Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).

Wang J., Zhang C., Liu H., McLaughlin R., Zhai Y., Vardeny S. R., Liu X., McGill S., Semenov D., Guo H., Tsuchikawa R., Deshpande V. V., Sun D., Vardeny Z. V., Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019). PubMed PMC

Náfrádi B., Szirmai P., Spina M., Lee H., Yazyev O. V., Arakcheeva A., Chernyshov D., Gibert M., Forró L., Horváth E., Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3. Nat. Commun. 7, 13406 (2016). PubMed PMC

Cai B., Chen X., Xie M., Zhang S., Liu X., Yang J., Zhou W., Guo S., Zeng H., A class of Pb-free double perovskite halide semiconductors with intrinsic ferromagnetism, large spin splitting and high Curie temperature. Mater. Horiz. 5, 961–968 (2018).

Ning W., Wang F., Wu B., Lu J., Yan Z., Liu X., Tao Y., Liu J.-M., Huang W., Fahlman M., Hultman L., Sum T. C., Gao F., Long electron–hole diffusion length in high-quality lead-free double perovskite films. Adv. Mater. 30, e1706246 (2018). PubMed

Ning W., Zhao X.-G., Klarbring J., Bai S., Ji F., Wang F., Simak S. I., Tao Y., Ren X.-M., Zhang L., Huang W., Abrikosov I. A., Gao F., Thermochromic lead-free halide double perovskites. Adv. Funct. Mater. 29, 1807375 (2019).

Shannon R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

Vegard L., Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Physik 5, 17–26 (1921).

Zheng F., Pérez-Dieste V., McChesney J. L., Luk Y.-Y., Abbott N. L., Himpsel F. J., Detection and switching of the oxidation state of Fe in a self-assembled monolayer. Surf. Sci. 587, L191–L196 (2005).

J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bombden, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics Division, Perkin-Elmer Corporation, 1992), pp. 80–81.

Petříček V., Dušek M., Palatinus L., Crystallographic computing system JANA2006: General features. Z. Kristallogr. Cryst. Mater. 229, 345–352 (2014).

Schade L., Wright A. D., Johnson R. D., Dollmann M., Wenger B., Nayak P. K., Prabhakaran D., Herz L. M., Nicholas R., Snaith H. J., Radaelli P. G., Structural and optical properties of Cs2AgBiBr6 double perovskite. ACS Energy Lett. 4, 299–305 (2019).

Ishii Y., Wickramasinghe N. P., Chimon S., A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning. J. Am. Chem. Soc. 125, 3438–3439 (2003). PubMed

Holmberg R. J., Burns T., Greer S. M., Kobera L., Stoian S. A., Korobkov I., Hill S., Bryce D. L., Woo T. K., Murugesu M., Intercalation of coordinatively unsaturated FeIII ion within interpenetrated metal–organic framework MOF-5. Chem. 22, 7711–7715 (2016). PubMed

Kobera L., Abbrent S., Holcova L., Urbanova M., Kolousek D., Dousova B., Brus J., Spying on Fe ions and their role in modified aluminosilicates during the sorption of anions using solid-state NMR spectroscopy. Micropor. Mesopor. Mat. 241, 115–122 (2017).

Kubicki D. J., Prochowicz D., Pinon A., Stevanato G., Hofstetter A., Zakeeruddin S. M., Grätzel M., Emsley L., Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from 133Cs and 1H NMR relaxation enhancement. J. Mater. Chem. A 7, 2326–2333 (2019).

Kawaguchi S., Takemoto M., Osaka K., Nishibori E., Moriyoshi C., Kubota Y., Kuroiwa Y., Sugimoto K., High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 88, 085111 (2017). PubMed

Haase A. R., Kerber M. A., Kessler D., Kronenbitter J., Krüger H., Lutz O., Müller M., Nolle A., Nuclear magnetic shielding and quadrupole coupling of 133Cs in cesium salt powders. Z. Naturforsch. 32, 952–956 (1977).

Hahn E. L., Spin Echoes. Phys. Rev. 80, 580–594 (1950).

Hamaed H., Laschuk M. W., Terskikh V. V., Schurko R. W., Application of solid-state 209Bi NMR to the structural characterization of bismuth-containing materials. J. Am. Chem. Soc. 131, 8271–8279 (2009). PubMed

Brus J., Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 16, 151–160 (2000). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Palladium-Doped Cs2AgBiBr6 with 1300 nm Near-Infrared Photoresponse

. 2024 Dec ; 20 (49) : e2404188. [epub] 20240920

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...