Palladium-Doped Cs2AgBiBr6 with 1300 nm Near-Infrared Photoresponse
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2662023LXPY006
Fundamental Research Funds for the Central Universities
2662024JC004
Fundamental Research Funds for the Central Universities
Open Foundation of Hubei Key Laboratory of Optical Information and Pattern Recognition
202103
Wuhan Institute of Technology
GA19-05259S
Grant Agency of the Czech Republic
Dnr KAW 2019.0082
Knut and Alice Wallenberg Foundation
46564-1
Swedish Energy Agency
SFO-Mat-LiU no. 2009-00971
Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University
2019-05551
Swedish Research Council (VR)
FASTCORR project 854843
ERC
CEP - Centrální evidence projektů
Grant No. 2024AFB718
National Natural Science Foundation of China
PubMed
39301924
PubMed Central
PMC11618710
DOI
10.1002/smll.202404188
Knihovny.cz E-zdroje
- Klíčová slova
- Cs2AgBiBr6, NIR light response, Pd doping, double perovskites, sub‐bandgap,
- Publikační typ
- časopisecké články MeSH
Lead-free halide double perovskite (HDP) Cs2AgBiBr6 has set a benchmark for research in HDP photoelectric applications due to its attractive optoelectronic properties. However, its narrow absorption range is a key limitation of this material. Herein, a novel dopant, palladium (Pd), is doped into Cs2AgBiBr6 and significantly extends the absorption to ≈1400 nm. Pd2+ ions are partially doped in the host lattice, most probably replacing Ag atoms and introducing a sub-bandgap state within the host bandgap, as indicated by the combination of spectroscopical measurements and theoretical calculations. Importantly, this sub-bandgap state extends the photoresponse of Cs2AgBiBr6 up to the NIR-II region of 1300 nm, setting a new record for HDPs. This work demonstrates a novel and efficient dopant for HDPs and highlights the effectiveness of employing a sub-bandgap to broaden the absorption of HDPs, shedding new light on tailoring large bandgap HDPs for NIR optoelectronic applications.
College of Engineering Huazhong Agricultural University Wuhan 430070 China
Department of Physics and Astronomy Uppsala University Uppsala SE 751 20 Sweden
Department of Physics Chemistry and Biology Linköping University Linköping SE 581 83 Sweden
Zobrazit více v PubMed
Jeon N. J., Noh J. H., Yang W. S., Kim Y. C., Ryu S., Seo J., Seok S. I., Nature 2015, 517, 476. PubMed
Stranks S. D., Eperon G. E., Grancini G., Menelaou C., Alcocer M. J. P., Leijtens T., Herz L. M., Petrozza A., Snaith H. J., Science 2013, 342, 341. PubMed
Babayigit A., Ethirajan A., Muller M., Conings B., Nature Mater 2016, 15, 247. PubMed
Boyd C. C., Cheacharoen R., Leijtens T., McGehee M. D., Chem. Rev. 2019, 119, 3418. PubMed
Slavney A. H., Hu T., Lindenberg A. M., Karunadasa H. I., J. Am. Chem. Soc. 2016, 138, 2138. PubMed
Wolf N. R., Connor B. A., Slavney A. H., Karunadasa H. I., Angew. Chem., Int. Ed. 2021, 60, 16264. PubMed
Lei H., Hardy D., Gao F., Adv. Funct. Mater. 2021, 31, 2105898.
Zhao X.‐G., Yang D., Ren J.‐C., Sun Y., Xiao Z., Zhang L., Joule 2018, 2, 1662.
Greul E., Petrus M. L., Binek A., Docampo P., Bein T., J. Mater. Chem. A 2017, 5, 19972.
Ning W., Wang F., Wu B., Lu J., Yan Z., Liu X., Tao Y., Liu J.‐M., Huang W., Fahlman M., Hultman L., Sum T. C., Gao F., Adv. Mater. 2018, 30, 1706246. PubMed
Zhang Z., Sun Q., Lu Y., Lu F., Mu X., Wei S.‐H., Sui M., Nat. Commun. 2022, 13, 3397. PubMed PMC
Yang J., Bao C., Ning W., Wu B., Ji F., Yan Z., Tao Y., Liu J., Sum T. C., Bai S., Wang J., Huang W., Zhang W., Gao F., Adv. Opt. Mater. 2019, 1801732.
Luo J., Li S., Wu H., Zhou Y., Li Y., Liu J., Li J., Li K., Yi F., Niu G., Tang J., ACS Photonics 2018, 5, 398.
Pan W., Wu H., Luo J., Deng Z., Ge C., Chen C., Jiang X., Yin W.‐J., Niu G., Zhu L., Yin L., Zhou Y., Xie Q., Ke X., Sui M., Tang J., Nature Photon 2017, 11, 726.
Keshavarz M., Debroye E., Ottesen M., Martin C., Zhang H., Fron E., Küchler R., Steele J. A., Bremholm M., Van De Vondel J., Wang H. I., Bonn M., Roeffaers M. B. J., Wiedmann S., Hofkens J., Adv. Mater. 2020, 32, 2001878. PubMed
Luo J., Wang X., Li S., Liu J., Guo Y., Niu G., Yao L., Fu Y., Gao L., Dong Q., Zhao C., Leng M., Ma F., Liang W., Wang L., Jin S., Han J., Zhang L., Etheridge J., Wang J., Yan Y., Sargent E. H., Tang J., Nature 2018, 563, 541. PubMed
Zhou L., Xu Y.‐F., Chen B.‐X., Kuang D.‐B., Su C.‐Y., Small 2018, 14, 1703762. PubMed
Kumar Tailor N., Singh S., Afroz M. A., Pant K. K., Satapathi S., Appl. Catal., B 2024, 340, 123247.
Kubicki D. J., Saski M., MacPherson S., Gal̷kowski K., Lewiński J., Prochowicz D., Titman J. J., Stranks S. D., Chem. Mater. 2020, 32, 8129. PubMed PMC
Du K., Meng W., Wang X., Yan Y., Mitzi D. B., Angew. Chem., Int. Ed. 2017, 56, 8158. PubMed
Ji F., Boschloo G., Wang F., Gao F., Solar RRL 2023, 202201112.
Tran T. T., Panella J. R., Chamorro J. R., Morey J. R., McQueen T. M., Mater. Horiz. 2017, 4, 688.
Karmakar A., Bernard G. M., Meldrum A., Oliynyk A. O., Michaelis V. K., J. Am. Chem. Soc. 2020, 142, 10780. PubMed
Ji F., Wang F., Kobera L., Abbrent S., Brus J., Ning W., Gao F., Chem. Sci. 2021, 12, 1730. PubMed PMC
Luque A., Martí A., Adv. Mater. 2010, 22, 160. PubMed
Nayak P. K., Sendner M., Wenger B., Wang Z., Sharma K., Ramadan A. J., Lovrinčić R., Pucci A., Madhu P. K., Snaith H. J., J. Am. Chem. Soc. 2018, 140, 574. PubMed
Ning W., Bao J., Puttisong Y., Moro F., Kobera L., Shimono S., Wang L., Ji F., Cuartero M., Kawaguchi S., Abbrent S., Ishibashi H., De Marco R., Bouianova I. A., Crespo G. A., Kubota Y., Brus J., Chung D. Y., Sun L., Chen W. M., Kanatzidis M. G., Gao F., Sci. Adv. 2020, 6, eabb5381. PubMed PMC
Ji F., Huang Y., Wang F., Kobera L., Xie F., Klarbring J., Abbrent S., Brus J., Yin C., Simak S. I., Abrikosov I. A., Buyanova I. A., Chen W. M., Gao F., Adv. Funct. Mater. 2020, 30, 2005521.
Ning W., Gao F., Adv. Mater. 2019, 31, 1900326. PubMed
Kibis L. S., Simanenko A. A., Stadnichenko A. I., Zaikovskii V. I., Boronin A. I., J. Phys. Chem. C 2021, 125, 20845.
Edlund U., Lejon T., Pyykko P., Venkatachalam T. K., Buncel E., J. Am. Chem. Soc. 1987, 109, 5982.
Kaupp M., in Theoretical and Computational Chemistry, Elsevier, Amsterdam, 2004, pp. 552–597.
Zunger A., Wei S.‐H., Ferreira L. G., Bernard J. E., Phys. Rev. Lett. 1990, 65, 353. PubMed
Xiao Z., Meng W., Wang J., Yan Y., ChemSusChem 2016, 9, 2628. PubMed
Yang J., Zhang P., Wei S.‐H., J. Phys. Chem. Lett. 2018, 9, 31. PubMed
Lin Q., Armin A., Burn P. L., Meredith P., Nature Photon 2015, 9, 687.
Liu G., Zhang Z., Wu C., Zhang Y., Li X., Yu W., Yao G., Liu S., Shi J., Liu K., Chen Z., Xiao L., Qu B., Adv Funct Materials 2022, 32, 2109891.
Zhang Z., Liu G., Guo W., Li X., Zhang Y., Wu C., Qu B., Shi J., Chen Z., Xiao L., Mater. Adv. 2022, 3, 4932.