Identifying Agricultural Frontiers for Modeling Global Cropland Expansion
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
80NSSC17M0039
Shared Services Center NASA - United States
80NSSC19M0039
Shared Services Center NASA - United States
PubMed
33163961
PubMed Central
PMC7608111
DOI
10.1016/j.oneear.2020.09.006
PII: S2590-3322(20)30475-9
Knihovny.cz E-zdroje
- Klíčová slova
- agriculture, climate change, cropland expansion, deforestation, frontier dynamics, integrated assessment models, land use change, positive deviance analysis, sustainability,
- Publikační typ
- časopisecké články MeSH
The increasing expansion of cropland is major driver of global carbon emissions and biodiversity loss. However, predicting plausible future global distributions of croplands remains challenging. Here, we show that, in general, existing global data aligned with classical economic theories of expansion explain the current (1992) global extent of cropland reasonably well, but not recent expansion (1992-2015). Deviations from models of cropland extent in 1992 ("frontierness") can be used to improve global models of recent expansion, most likely as these deviations are a proxy for cropland expansion under frontier conditions where classical economic theories of expansion are less applicable. Frontierness is insensitive to the land cover dataset used and is particularly effective in improving models that include mosaic land cover classes and the largely smallholder-driven frontier expansion occurring in such areas. Our findings have important implications as the frontierness approach offers a straightforward way to improve global land use change models.
Department of Geosciences Texas Tech University Lubbock TX 79409 USA
Earth and Life Institute UCLouvain 1348 Louvain la Neuve Belgium
Fonds de la Recherche Scientifique 1000 Brussels Belgium
Global Change Research Institute of the Czech Academy of Sciences 60300 Brno Czech Republic
iDiv German Centre for Integrative Biodiversity Research 04103 Leipzig Germany
Institute of Geoscience and Geography Martin Luther University Halle Wittenberg 06099 Halle Germany
School of Geography and Environmental Science University of Southampton Southampton UK
Swiss Federal Institute for Forest Snow and Landscape Research Birmensdorf Switzerland
Zobrazit více v PubMed
Ellis E.C., Kaplan J.O., Fuller D.Q., Vavrus S., Klein Goldewijk K., Verburg P.H. Used planet: a global history. Proc. Natl. Acad. Sci. U S A. 2013;110:7978–7985. PubMed PMC
Haberl H., Erb K.H., Krausmann F., Gaube V., Bondeau A., Plutzar C., Gingrich S., Lucht W., Fischer-Kowalski M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. U S A. 2007;104:12942–12947. PubMed PMC
Griscom B.W., Adams J., Ellis P.W., Houghton R.A., Lomax G., Miteva D.A., Schlesinger W.H., Shoch D., Siikamäki J.V., Smith P. Natural climate solutions. Proc. Natl. Acad. Sci. U S A. 2017;114:11645–11650. PubMed PMC
Laurance W.F., Sayer J., Cassman K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014;29:107–116. PubMed
Powers R.P., Jetz W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 2019;9:323–329.
Zabel F., Delzeit R., Schneider J.M., Seppelt R., Mauser W., Václavík T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019;10:1–10. PubMed PMC
Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–818. PubMed
Stevenson J.R., Villoria N., Byerlee D., Kelley T., Maredia M. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc. Natl. Acad. Sci. U S A. 2013;110:8363–8368. PubMed PMC
Seppelt R., Manceur A.M., Liu J., Fenichel E.P., Klotz S. Synchronized peak-rate years of global resources use. Ecol. Soc. 2014;19:art50.
Grassini P., Eskridge K.M., Cassman K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013;4:1–11. PubMed PMC
Alexander P., Prestele R., Verburg P.H., Arneth A., Baranzelli C., Batista e Silva F., Brown C., Butler A., Calvin K., Dendoncker N. Assessing uncertainties in land cover projections. Glob. Chang. Biol. 2017;23:767–781. PubMed
Prestele R., Alexander P., Rounsevell M.D.A., Arneth A., Calvin K., Doelman J., Eitelberg D.A., Engström K., Fujimori S., Hasegawa T. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob. Chang. Biol. 2016;22:3967–3983. PubMed PMC
Stehfest E., van Zeist W.J., Valin H., Havlik P., Popp A., Kyle P., Tabeau A., Mason-D’Croz D., Hasegawa T., Bodirsky B.L. Key determinants of global land-use projections. Nat. Commun. 2019;10:1–10. PubMed PMC
Delzeit R., Zabel F., Meyer C., Václavík T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Chang. 2017;17:1429–1441.
Hatna E., Bakker M.M. Abandonment and expansion of arable land in Europe. Ecosystems. 2011;14:720–731.
Barbier E.B. Scarcity, frontiers and development. Geogr. J. 2012;178:110–122.
Barbier E.B. Long run agricultural land expansion, booms and busts. Land Use Policy. 2020;93:103808.
le Polain de Waroux Y., Baumann M., Gasparri N.I., Gavier-Pizarro G., Godar J., Kuemmerle T., Müller R., Vázquez F., Volante J.N., Meyfroidt P. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 2018;108:204–225.
de Janvry A., Fafchamps M., Sadoulet E. Peasant household behaviour with missing markets: some paradoxes explained. Econ. J. 1991;101:1400–1417.
Meyfroidt P., Roy Chowdhury R., de Bremond A., Ellis E.C., Erb K.H., Filatova T., Garrett R.D., Grove J.M., Heinimann A., Kuemmerle T. Middle-range theories of land system change. Glob. Environ. Chang. 2018;53:52–67.
Lambin E.F., Meyfroidt P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. U S A. 2011;108:3465–3472. PubMed PMC
Hertel T.W., Baldos U.L.C., van der Mensbrugghe D. Predicting long-term food demand, cropland use, and prices. Annu. Rev. Resour. Econ. 2016;8:417–441.
Verburg P.H., Alexander P., Evans T., Magliocca N.R., Malek Z., Rounsevell M.D.A., van Vliet J. Beyond land cover change: towards a new generation of land use models. Curr. Opin. Environ. Sustain. 2019;38:77–85.
Eitelberg D.A., van Vliet J., Verburg P.H. A review of global potentially available cropland estimates and their consequences for model-based assessments. Glob. Chang. Biol. 2015;21:1236–1248. PubMed
Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–853. PubMed
Defourny P., Kirches G., Brockmann C., Boettcher M., Peters M., Bontemps S., Lamarche C., Schlerf M., Santoro M. UCL Geomatics; Leuven, Belgium: 2017. Land Cover CCI Product User Guide Version 2.0.https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
Curtis P.G., Slay C.M., Harris N.L., Tyukavina A., Hansen M.C. Classifying drivers of global forest loss. Science. 2018;361:1108–1111. PubMed
Hertel T.W., West T.A.P., Börner J., Villoria N.B. A review of global-local-global linkages in economic land-use/cover change models. Environ. Res. Lett. 2019;14:053003.
Fischer G., Nachtergaele F., Prieler S., Velthuizen H.T.van, Verelst L., Wiberg D. Food Agric. Organ. United Nations; 2008. Global Agro-Ecological Zones: Model Documentation; p. 179.
Ricardo D. John Murray); 1817. The Principles of Political Economy and Taxation.
Verburg P.H., Ellis E.C., Letourneau A. A global assessment of market accessibility and market influence for global environmental change studies. Environ. Res. Lett. 2011;6:034019.
von Thunen J. Pergamon; 1966. The Isolated State.
Gridded population of the world, version 3 (GPWv3): population density grid. Future estimates. 2005. https://cmr.earthdata.nasa.gov/search/concepts/C1000000024-SEDAC.html
Boserup E. Allen & Unwin); 1965. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure.
Kummu M., Taka M., Guillaume J.H.A. Gridded global datasets for gross domestic product and human development index over 1990-2015. Sci. Data. 2018;5:1–15. PubMed PMC
Levinson F.J., Barney J., Bassett L., Schultink W. Utilization of positive deviance analysis in evaluating community-based nutrition programs: an application to the Dular program in Bihar, India. Food Nutr. Bull. 2007;28:259–265. PubMed
Cinner J.E., Huchery C., MacNeil M.A., Graham N.A.J., McClanahan T.R., Maina J., Maire E., Kittinger J.N., Hicks C.C., Mora C. Bright spots among the world’s coral reefs. Nature. 2016;535:416–419. PubMed
Frei B., Renard D., Mitchell M.G.E., Seufert V., Chaplin-Kramer R., Rhemtulla J.M., Bennett E.M. Bright spots in agricultural landscapes: identifying areas exceeding expectations for multifunctionality and biodiversity. J. Appl. Ecol. 2018;55:2731–2743.
Eigenbrod F., Anderson B.J., Armsworth P.R., Heinemeyer A., Jackson S.F., Parnell M., Thomas C.D., Gaston K.J. Ecosystem service benefits of contrasting conservation strategies in a human-dominated region. Proc. R. Soc. B Biol. Sci. 2009;276:2903–2911. PubMed PMC
Alexander P., Rabin S., Anthoni P., Henry R., Pugh T.A.M., Rounsevell M.D.A., Arneth A. Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Glob. Chang. Biol. 2018;24:2791–2809. PubMed PMC
Graesser J., Ramankutty N., Coomes O.T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 2018;13 doi: 10.1088/1748-9326/aad5bf#. DOI
Ordway E.M., Naylor R.L., Nkongho R.N., Lambin E.F. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nat. Commun. 2019;10:1–11. PubMed PMC
Ricciardi V., Ramankutty N., Mehrabi Z., Jarvis L., Chookolingo B. How much of the world’s food do smallholders produce? Glob. Food Sec. 2018;17:64–72.
Meyfroidt P., Schierhorn F., Prishchepov A.V., Müller D., Kuemmerle T. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Chang. 2016;37:1–15.
Kraemer R., Prishchepov A.V., Müller D., Kuemmerle T., Radeloff V.C., Dara A., Terekhov A., Frühauf M. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environ. Res. Lett. 2015;10:054012.
Dara A., Baumann M., Kuemmerle T., Pflugmacher D., Rabe A., Griffiths P., Hölzel N., Kamp J., Freitag M., Hostert P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018;213:49–60.
Song X.P., Hansen M.C., Stehman S.V., Potapov P.V., Tyukavina A., Vermote E.F., Townshend J.R. Global land change from 1982 to 2016. Nature. 2018;560:639–643. PubMed PMC
Garrett R.D., Lambin E.F., Naylor R.L. The new economic geography of land use change: supply chain configurations and land use in the Brazilian Amazon. Land Use Policy. 2013;34:265–275.
Lesiv M., Laso Bayas J.C., See L., Duerauer M., Dahlia D., Durando N., Hazarika R., Kumar Sahariah P., Vakolyuk M., Blyshchyk V. Estimating the global distribution of field size using crowdsourcing. Glob. Chang. Biol. 2019;25:174–186. PubMed PMC
Villoria N.B., Liu J. Using spatially explicit data to improve our understanding of land supply responses: an application to the cropland effects of global sustainable irrigation in the Americas. Land Use Policy. 2018;75:411–419.
Chen B., Kennedy C.M., Xu B. Effective moratoria on land acquisitions reduce tropical deforestation: evidence from Indonesia. Environ. Res. Lett. 2019;14:044009.
Fritz S., See L., Mccallum I., You L., Bun A., Moltchanova E., Duerauer M., Albrecht F., Schill C., Perger C. Mapping global cropland and field size. Glob. Chang. Biol. 2015;21:1980–1992. PubMed
Meyfroidt P. Trade-offs between environment and livelihoods: bridging the global land use and food security discussions. Glob. Food Sec. 2018;16:9–16.
le Polain de Waroux Y., Garrett R.D., Heilmayr R., Lambin E.F. Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano. Proc. Natl. Acad. Sci. U S A. 2016;113:4021–4026. PubMed PMC
Weiss D.J., Nelson A., Gibson H.S., Temperley W., Peedell S., Lieber A., Hancher M., Poyart E., Belchior S., Fullman N. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature. 2018;553:333–336. PubMed
Fehlenberg V., Baumann M., Gasparri N.I., Piquer-Rodriguez M., Gavier-Pizarro G., Kuemmerle T. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Glob. Environ. Chang. 2017;45:24–34.
Sulla-Menashe D., Friedl M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product. USGS; 2018. https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf
Boserup E. Allen & Unwin); 1965. The Conditions of Agricultural Growth: The Economics of Agrarian Societies.
Rosenzweig C., Elliott J., Deryng D., Ruane A.C., Müller C., Arneth A., Boote K.J., Folberth C., Glotter M., Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. U S A. 2014;111:3268–3273. PubMed PMC
Hof C., Voskamp A., Biber M.F., Böhning-Gaese K., Engelhardt E.K., Niamir A., Willis S.G., Hickler T. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl. Acad. Sci. U S A. 2018;115:13294–13299. PubMed PMC
Eigenbrod Felix, Beckmann Michael, Dunnett Seb, Graham Laura, Holland Robert, Meyfroidt Patrick, Seppelt Ralf, Song Xiao-Peng, Spake Rebecca, Václavík Tomáš, Verburg P. Mendeley Data; 2020. Identifying Agricultural Frontiers for Modelling Global Cropland Expansion—Code and Data. PubMed DOI PMC
Pérez-Hoyos A., Rembold F., Kerdiles H., Gallego J. Comparison of global land cover datasets for cropland monitoring. Remote Sens. 2017;9 doi: 10.3390/rs9111118. DOI
Oldekop J.A., Sims K.R.E., Whittingham M.J., Agrawal A. An upside to globalization: international outmigration drives reforestation in Nepal. Glob. Environ. Chang. 2018;52:66–74.
Kuemmerle T., Erb K., Meyfroidt P., Müller D., Verburg P.H., Estel S., Haberl H., Hostert P., Jepsen M.R., Kastner T. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013;5:484–493. PubMed PMC
Angelsen A. Policies for reduced deforestation and their impact on agricultural production. Proc. Natl. Acad. Sci. 2010;107:19639–19644. PubMed PMC
Levers C., Schneider M., Prishchepov A.V., Estel S., Kuemmerle T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 2018;644:95–111. PubMed
van Asselen S., Verburg P.H. A Land System representation for global assessments and land-use modeling. Glob. Chang. Biol. 2012;18:3125–3148. PubMed
Sandel B., Svenning J.C. Human impacts drive a global topographic signature in tree cover. Nat. Commun. 2013;4:1–7. PubMed
FAO-AQUASTAT Food Agric. Organ. United Nations (FAO). AQUASTAT Database. 2016. http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
UNEP-WCMC . User Manual for the World Database on Protected Areas and world database on other effective area-based conservation measures: 1.6. UNEP-WCMC; Cambridge UK: 2019. http://wcmc.io/WDPA_Manual
Dalal D.K., Zickar M.J. Some common myths about centering predictor variables in moderated multiple regression and polynomial regression. Organ. Res. Methods. 2012;15:339–362.
Václavík T., Lautenbach S., Kuemmerle T., Seppelt R. Mapping global land system archetypes. Glob. Environ. Chang. 2013;23:1637–1647.
Varma V., Bebber D.P. Climate change impacts on banana yields around the world. Nat. Clim. Chang. 2019;9:752–757. PubMed PMC
Freckleton R.P. On the misuse of residuals in ecology: regression of residuals vs. multiple regression. J. Anim. Ecol. 2002;71:542–545.
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2019. R: A Language and Environment for Statistical Computing.https://www.R-project.org/
Identifying Agricultural Frontiers for Modeling Global Cropland Expansion