Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity

. 2019 Jun 28 ; 10 (1) : 2844. [epub] 20190628

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31253787
Odkazy

PubMed 31253787
PubMed Central PMC6598988
DOI 10.1038/s41467-019-10775-z
PII: 10.1038/s41467-019-10775-z
Knihovny.cz E-zdroje

With rising demand for biomass, cropland expansion and intensification represent the main strategies to boost agricultural production, but are also major drivers of biodiversity decline. We investigate the consequences of attaining equal global production gains by 2030, either by cropland expansion or intensification, and analyse their impacts on agricultural markets and biodiversity. We find that both scenarios lead to lower crop prices across the world, even in regions where production decreases. Cropland expansion mostly affects biodiversity hotspots in Central and South America, while cropland intensification threatens biodiversity especially in Sub-Saharan Africa, India and China. Our results suggest that production gains will occur at the costs of biodiversity predominantly in developing tropical regions, while Europe and North America benefit from lower world market prices without putting their own biodiversity at risk. By identifying hotspots of potential future conflicts, we demonstrate where conservation prioritization is needed to balance agricultural production with conservation goals.

Zobrazit více v PubMed

Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles. 2008;22:GB1003. doi: 10.1029/2007GB002952. DOI

Haberl H, et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA. 2007;104:12942–12947. doi: 10.1073/pnas.0704243104. PubMed DOI PMC

Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19, 50 (2014).

Kastner T, Rivas MJI, Koch W, Nonhebel S. Global changes in diets and the consequences for land requirements for food. Proc. Natl Acad. Sci. USA. 2012;109:6868–6872. doi: 10.1073/pnas.1117054109. PubMed DOI PMC

Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA. 2011;108:20260–20264. doi: 10.1073/pnas.1116437108. PubMed DOI PMC

Mauser W, et al. Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat. Commun. 2015;6:8946. doi: 10.1038/ncomms9946. PubMed DOI PMC

Rueda, X. & Lambin, E. F. Responding to globalization: impacts of certification on colombian small-scale coffee growers. Ecol. Soc. 18, 10.5751/ES-05595-180321 (2013).

Rueda, X. & Lambin, E. F. in The Evolving Sphere of Food Security. (ed Rosamond L. Naylor) (Oxford University Press, Oxford, 2014).

Pereira HM, Navarro LM, Martins IS. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 2012;37:25–50. doi: 10.1146/annurev-environ-042911-093511. DOI

Sala OE, et al. Biodiversity—global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI

Foley JA, et al. Global consequences of land use. Science. 2005;309:570–574. doi: 10.1126/science.1111772. PubMed DOI

Chaplin-Kramer R, et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl Acad. Sci. USA. 2015;112:7402. doi: 10.1073/pnas.1406485112. PubMed DOI PMC

Beckmann M, et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Change Biol. 2019;25:1941–1956. doi: 10.1111/gcb.14606. PubMed DOI

Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 2003;18:182–188. doi: 10.1016/S0169-5347(03)00011-9. DOI

Meehan TD, Werling BP, Landis DA, Gratton C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA. 2011;108:11500. doi: 10.1073/pnas.1100751108. PubMed DOI PMC

De Frutos A, Olea PP, Mateo-Tomás P. Responses of medium- and large-sized bird diversity to irrigation in dry cereal agroecosystems across spatial scales. Agric., Ecosyst. Environ. 2015;207:141–152. doi: 10.1016/j.agee.2015.04.009. DOI

Geiger F, et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010;11:97–105. doi: 10.1016/j.baae.2009.12.001. DOI

Kleijn D, et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B: Biol. Sci. 2009;276:903. doi: 10.1098/rspb.2008.1509. PubMed DOI PMC

Seppelt R, et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. Bioscience. 2016;66:890–896. doi: 10.1093/biosci/biw004. PubMed DOI PMC

UN. in A/RES/70/1 (Resolution adopted by the United Nations General Assembly on 25 September 2015, UN 2015).

Siebert S., Kummu M., Porkka M., Döll P., Ramankutty N., Scanlon B. R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences. 2015;19(3):1521–1545. doi: 10.5194/hess-19-1521-2015. DOI

Monfreda C, Ramankutty N, Foley JA. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles. 2008;22:GB1022. doi: 10.1029/2007GB002947. DOI

Goldewijk KK, Beusen A, Drecht Gv, Vos Md. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011;20:73–86. doi: 10.1111/j.1466-8238.2010.00587.x. DOI

Václavík T, Lautenbach S, Kuemmerle T, Seppelt R. Mapping global land system archetypes. Glob. Environ. Change. 2013;23:1637–1647. doi: 10.1016/j.gloenvcha.2013.09.004. DOI

van Asselen S, Verburg PH. A Land System representation for global assessments and land-use modeling. Glob. Change Biol. 2012;18:3125–3148. doi: 10.1111/j.1365-2486.2012.02759.x. PubMed DOI

Müller C, et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 2017;10:1403–1422. doi: 10.5194/gmd-10-1403-2017. DOI

Foley JA, et al. Solutions for a cultivated planet. Nature. 2011;478:337–342. doi: 10.1038/nature10452. PubMed DOI

Godfray HCJ, et al. Food security: the challenge of feeding 9 Billion people. Science. 2010;327:812–818. doi: 10.1126/science.1185383. PubMed DOI

Delzeit R, Zabel F, Meyer C, Václavík T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change. 2017;17:1429–1441. doi: 10.1007/s10113-016-0927-1. DOI

Laurance WF, Sayer J, Cassman KG. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014;29:107–116. doi: 10.1016/j.tree.2013.12.001. PubMed DOI

Egli L, Meyer C, Scherber C, Kreft H, Tscharntke T. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Glob. Change Biol. 2018;24:2212–2228. doi: 10.1111/gcb.14076. PubMed DOI

Phalan B, et al. Crop expansion and conservation priorities in tropical countries. PLOS ONE. 2013;8:e51759. doi: 10.1371/journal.pone.0051759. PubMed DOI PMC

Phalan B, Green R, Balmford A. Closing yield gaps: perils and possibilities for biodiversity conservation. Philos. Trans. R. Soc. B: Biol. Sci. 2014;369:20120285. doi: 10.1098/rstb.2012.0285. PubMed DOI PMC

Bellard C, et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 2014;23:1376–1386. doi: 10.1111/geb.12228. DOI

Shackelford Gorm E, Steward Peter R, German Richard N, Sait Steven M, Benton Tim G. Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature. Divers. Distrib. 2014;21:357–367. doi: 10.1111/ddi.12291. PubMed DOI PMC

Mueller ND, et al. Closing yield gaps through nutrient and water management. Nature. 2012;490:254–257. doi: 10.1038/nature11420. PubMed DOI

Zabel F, Putzenlechner B, Mauser W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE. 2014;9:e107522. doi: 10.1371/journal.pone.0107522. PubMed DOI PMC

Mosnier A, et al. Global food markets, trade and the cost of climate change adaptation. Food Secur. 2014;6:29–44. doi: 10.1007/s12571-013-0319-z. DOI

Baldos ULC, Hertel TW. Global food security in 2050: the role of agricultural productivity and climate change. Aust. J. Agric. Resour. Econ. 2014;58:554–570. doi: 10.1111/1467-8489.12048. DOI

Hertel TW, Ramankutty N, Baldos ULC. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl Acad. Sci. USA. 2014;111:13799–13804. doi: 10.1073/pnas.1403543111. PubMed DOI PMC

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecol Lett. 2012;15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x. PubMed DOI PMC

Harrison PA, Dunford RW, Holman IP, Rounsevell MDA. Climate change impact modelling needs to include cross-sectoral interactions. Nat. Clim. Change. 2016;6:885. doi: 10.1038/nclimate3039. DOI

Pereira HM, et al. Scenarios for global biodiversity in the 21st century. Science. 2010;330:1496–1501. doi: 10.1126/science.1196624. PubMed DOI

Sala OE, et al. Global biodiversity scenarios for the year 2100. Science. 2000;287:1770. doi: 10.1126/science.287.5459.1770. PubMed DOI

FAOSTAT. http://www.fao.org/faostat/en/#data/QC (2019).

Delzeit R, Klepper G, Zabel F, Mauser W. Global economic–biophysical assessment of midterm scenarios for agricultural markets—biofuel policies, dietary patterns, cropland expansion, and productivity growth. Environ. Res. Lett. 2018;13:025003. doi: 10.1088/1748-9326/aa9da2. DOI

Kehoe L, et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 2017;1:1129–1135. doi: 10.1038/s41559-017-0234-3. PubMed DOI

UNEP-WCMC. World Database on Protected Areas User Manual 1.0.(UNEP-WCMC: Cambridge, 2015.

Kehoe L, et al. Global patterns of agricultural land-use intensity and vertebrate diversity. Divers. Distrib. 2015;21:1308–1318. doi: 10.1111/ddi.12359. DOI

Pradhan P, Fischer G, van Velthuizen H, Reusser DE, Kropp JP. Closing yield gaps: how sustainable can we be? PLOS ONE. 2015;10:e0129487. doi: 10.1371/journal.pone.0129487. PubMed DOI PMC

Henle K, et al. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—a review. Agric., Ecosyst. Environ. 2008;124:60–71. doi: 10.1016/j.agee.2007.09.005. DOI

Tryjanowski P, et al. Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithol. 2011;46:1–12. doi: 10.3161/000164511X589857. DOI

(eds Jarvis, DPadoch, CCooper, H). Managing Biodiversity in Agricultural Ecosystems. (Columbia University Press, New York, 2007) .

Chateil C, et al. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric., Ecosyst. Environ. 2013;171:25–32. doi: 10.1016/j.agee.2013.03.004. DOI

Holt AR, Alix A, Thompson A, Maltby L. Food production, ecosystem services and biodiversity: we can’t have it all everywhere. Sci. Total Environ. 2016;573:1422–1429. doi: 10.1016/j.scitotenv.2016.07.139. PubMed DOI

Alexander P, et al. Assessing uncertainties in land cover projections. Glob. Change Biol. 2016;23:767–781. doi: 10.1111/gcb.13447. PubMed DOI

Prestele R, et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob. Change Biol. 2016;22:3967–3983. doi: 10.1111/gcb.13337. PubMed DOI PMC

Rosen RA. IAMs and peer review. Nat. Clim. Change. 2015;5:390. doi: 10.1038/nclimate2582. DOI

Fritz S, et al. Mapping global cropland and field size. Glob. Change Biol. 2015;21:1980–1992. doi: 10.1111/gcb.12838. PubMed DOI

Licker R, et al. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 2010;19:769–782. doi: 10.1111/j.1466-8238.2010.00563.x. DOI

Hurlbert AH, Jetz W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA. 2007;104:13384–13389. doi: 10.1073/pnas.0704469104. PubMed DOI PMC

Orme CDL, et al. Global hotspots of species richness are not congruent with endemism or threat. Nature. 2005;436:1016. doi: 10.1038/nature03850. PubMed DOI

Margules CR, Pressey RL. Systematic conservation planning. Nature. 2000;405:243. doi: 10.1038/35012251. PubMed DOI

Alkemade R, et al. GLOBIO3: A Framew. Invest. Options Reducing Glob. Terr. Biodivers. Loss. 2009;12:374–390.

Chaplin-Kramer R, et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 2015;6:10158. doi: 10.1038/ncomms10158. PubMed DOI PMC

Fischer J, et al. Land sparing versus land sharing: moving forward. Conserv Lett. 2014;7:149–157. doi: 10.1111/conl.12084. DOI

Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science. 2011;333:1289–1291. doi: 10.1126/science.1208742. PubMed DOI

von Wehrden H, et al. Realigning the land-sharing/land-sparing debate to match conservation needs: considering diversity scales and land-use history. Landsc. Ecol. 2014;29:941–948. doi: 10.1007/s10980-014-0038-7. DOI

Fischer J, et al. Reframing the food-biodiversity challenge. Trends Ecol. Evol. 2017;32:335–345. doi: 10.1016/j.tree.2017.02.009. PubMed DOI

Seppelt R, Lautenbach S, Volk M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 2013;5:458–463. doi: 10.1016/j.cosust.2013.05.002. DOI

Vaclavik T, et al. Investigating potential transferability of place-based research in land system science. Environ. Res. Lett. 2016;11:16. doi: 10.1088/1748-9326/11/9/095002. DOI

Garibaldi LA, et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 2017;32:68–80. doi: 10.1016/j.tree.2016.10.001. PubMed DOI

Henry RC, et al. Food supply and bioenergy production within the global cropland planetary boundary. PLoS One. 2018;13:e0194695. doi: 10.1371/journal.pone.0194695. PubMed DOI PMC

Muri Helene. The role of large—scale BECCS in the pursuit of the 1.5°C target: an Earth system model perspective. Environmental Research Letters. 2018;13(4):044010. doi: 10.1088/1748-9326/aab324. DOI

ESA. Land Cover CCI Version 2. http://maps.elie.ucl.ac.be/CCI/viewer/index.php (2014).

Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision.(FAO, Rome, 2012) .

Hank TB, Bach H, Mauser W. Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: application for wheat in Central Europe. Remote Sens. 2015;7:3934–3965. doi: 10.3390/rs70403934. DOI

IUCN. The IUCN Red List of Threatened Species. http://www.iucnredlist.org/technical-documents/spatial-data (2012).

BirdLife. BirdLife Data Zone. http://www.birdlife.org/datazone/home (2012).

Kier G, et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA. 2009;106:9322–9327. doi: 10.1073/pnas.0810306106. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Identifying Agricultural Frontiers for Modeling Global Cropland Expansion

. 2020 Oct 23 ; 3 (4) : 504-514.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...