Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31253787
PubMed Central
PMC6598988
DOI
10.1038/s41467-019-10775-z
PII: 10.1038/s41467-019-10775-z
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- ekonomické modely MeSH
- klimatické změny MeSH
- zachování přírodních zdrojů metody MeSH
- zemědělství ekonomika metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
With rising demand for biomass, cropland expansion and intensification represent the main strategies to boost agricultural production, but are also major drivers of biodiversity decline. We investigate the consequences of attaining equal global production gains by 2030, either by cropland expansion or intensification, and analyse their impacts on agricultural markets and biodiversity. We find that both scenarios lead to lower crop prices across the world, even in regions where production decreases. Cropland expansion mostly affects biodiversity hotspots in Central and South America, while cropland intensification threatens biodiversity especially in Sub-Saharan Africa, India and China. Our results suggest that production gains will occur at the costs of biodiversity predominantly in developing tropical regions, while Europe and North America benefit from lower world market prices without putting their own biodiversity at risk. By identifying hotspots of potential future conflicts, we demonstrate where conservation prioritization is needed to balance agricultural production with conservation goals.
Department of Geography Ludwig Maximilians Universität München 80333 Munich Germany
Global Change Research Institute of the Czech Academy of Sciences 60300 Brno Czech Republic
iDiv German Centre for Integrative Biodiversity Research 04103 Leipzig Germany
Institute of Geoscience and Geography Martin Luther University Halle Wittenberg 06099 Halle Germany
Zobrazit více v PubMed
Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles. 2008;22:GB1003. doi: 10.1029/2007GB002952. DOI
Haberl H, et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA. 2007;104:12942–12947. doi: 10.1073/pnas.0704243104. PubMed DOI PMC
Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19, 50 (2014).
Kastner T, Rivas MJI, Koch W, Nonhebel S. Global changes in diets and the consequences for land requirements for food. Proc. Natl Acad. Sci. USA. 2012;109:6868–6872. doi: 10.1073/pnas.1117054109. PubMed DOI PMC
Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA. 2011;108:20260–20264. doi: 10.1073/pnas.1116437108. PubMed DOI PMC
Mauser W, et al. Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat. Commun. 2015;6:8946. doi: 10.1038/ncomms9946. PubMed DOI PMC
Rueda, X. & Lambin, E. F. Responding to globalization: impacts of certification on colombian small-scale coffee growers. Ecol. Soc. 18, 10.5751/ES-05595-180321 (2013).
Rueda, X. & Lambin, E. F. in The Evolving Sphere of Food Security. (ed Rosamond L. Naylor) (Oxford University Press, Oxford, 2014).
Pereira HM, Navarro LM, Martins IS. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 2012;37:25–50. doi: 10.1146/annurev-environ-042911-093511. DOI
Sala OE, et al. Biodiversity—global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI
Foley JA, et al. Global consequences of land use. Science. 2005;309:570–574. doi: 10.1126/science.1111772. PubMed DOI
Chaplin-Kramer R, et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl Acad. Sci. USA. 2015;112:7402. doi: 10.1073/pnas.1406485112. PubMed DOI PMC
Beckmann M, et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Change Biol. 2019;25:1941–1956. doi: 10.1111/gcb.14606. PubMed DOI
Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 2003;18:182–188. doi: 10.1016/S0169-5347(03)00011-9. DOI
Meehan TD, Werling BP, Landis DA, Gratton C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA. 2011;108:11500. doi: 10.1073/pnas.1100751108. PubMed DOI PMC
De Frutos A, Olea PP, Mateo-Tomás P. Responses of medium- and large-sized bird diversity to irrigation in dry cereal agroecosystems across spatial scales. Agric., Ecosyst. Environ. 2015;207:141–152. doi: 10.1016/j.agee.2015.04.009. DOI
Geiger F, et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010;11:97–105. doi: 10.1016/j.baae.2009.12.001. DOI
Kleijn D, et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B: Biol. Sci. 2009;276:903. doi: 10.1098/rspb.2008.1509. PubMed DOI PMC
Seppelt R, et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. Bioscience. 2016;66:890–896. doi: 10.1093/biosci/biw004. PubMed DOI PMC
UN. in A/RES/70/1 (Resolution adopted by the United Nations General Assembly on 25 September 2015, UN 2015).
Siebert S., Kummu M., Porkka M., Döll P., Ramankutty N., Scanlon B. R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences. 2015;19(3):1521–1545. doi: 10.5194/hess-19-1521-2015. DOI
Monfreda C, Ramankutty N, Foley JA. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles. 2008;22:GB1022. doi: 10.1029/2007GB002947. DOI
Goldewijk KK, Beusen A, Drecht Gv, Vos Md. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011;20:73–86. doi: 10.1111/j.1466-8238.2010.00587.x. DOI
Václavík T, Lautenbach S, Kuemmerle T, Seppelt R. Mapping global land system archetypes. Glob. Environ. Change. 2013;23:1637–1647. doi: 10.1016/j.gloenvcha.2013.09.004. DOI
van Asselen S, Verburg PH. A Land System representation for global assessments and land-use modeling. Glob. Change Biol. 2012;18:3125–3148. doi: 10.1111/j.1365-2486.2012.02759.x. PubMed DOI
Müller C, et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 2017;10:1403–1422. doi: 10.5194/gmd-10-1403-2017. DOI
Foley JA, et al. Solutions for a cultivated planet. Nature. 2011;478:337–342. doi: 10.1038/nature10452. PubMed DOI
Godfray HCJ, et al. Food security: the challenge of feeding 9 Billion people. Science. 2010;327:812–818. doi: 10.1126/science.1185383. PubMed DOI
Delzeit R, Zabel F, Meyer C, Václavík T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change. 2017;17:1429–1441. doi: 10.1007/s10113-016-0927-1. DOI
Laurance WF, Sayer J, Cassman KG. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014;29:107–116. doi: 10.1016/j.tree.2013.12.001. PubMed DOI
Egli L, Meyer C, Scherber C, Kreft H, Tscharntke T. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Glob. Change Biol. 2018;24:2212–2228. doi: 10.1111/gcb.14076. PubMed DOI
Phalan B, et al. Crop expansion and conservation priorities in tropical countries. PLOS ONE. 2013;8:e51759. doi: 10.1371/journal.pone.0051759. PubMed DOI PMC
Phalan B, Green R, Balmford A. Closing yield gaps: perils and possibilities for biodiversity conservation. Philos. Trans. R. Soc. B: Biol. Sci. 2014;369:20120285. doi: 10.1098/rstb.2012.0285. PubMed DOI PMC
Bellard C, et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 2014;23:1376–1386. doi: 10.1111/geb.12228. DOI
Shackelford Gorm E, Steward Peter R, German Richard N, Sait Steven M, Benton Tim G. Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature. Divers. Distrib. 2014;21:357–367. doi: 10.1111/ddi.12291. PubMed DOI PMC
Mueller ND, et al. Closing yield gaps through nutrient and water management. Nature. 2012;490:254–257. doi: 10.1038/nature11420. PubMed DOI
Zabel F, Putzenlechner B, Mauser W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE. 2014;9:e107522. doi: 10.1371/journal.pone.0107522. PubMed DOI PMC
Mosnier A, et al. Global food markets, trade and the cost of climate change adaptation. Food Secur. 2014;6:29–44. doi: 10.1007/s12571-013-0319-z. DOI
Baldos ULC, Hertel TW. Global food security in 2050: the role of agricultural productivity and climate change. Aust. J. Agric. Resour. Econ. 2014;58:554–570. doi: 10.1111/1467-8489.12048. DOI
Hertel TW, Ramankutty N, Baldos ULC. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl Acad. Sci. USA. 2014;111:13799–13804. doi: 10.1073/pnas.1403543111. PubMed DOI PMC
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecol Lett. 2012;15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x. PubMed DOI PMC
Harrison PA, Dunford RW, Holman IP, Rounsevell MDA. Climate change impact modelling needs to include cross-sectoral interactions. Nat. Clim. Change. 2016;6:885. doi: 10.1038/nclimate3039. DOI
Pereira HM, et al. Scenarios for global biodiversity in the 21st century. Science. 2010;330:1496–1501. doi: 10.1126/science.1196624. PubMed DOI
Sala OE, et al. Global biodiversity scenarios for the year 2100. Science. 2000;287:1770. doi: 10.1126/science.287.5459.1770. PubMed DOI
FAOSTAT. http://www.fao.org/faostat/en/#data/QC (2019).
Delzeit R, Klepper G, Zabel F, Mauser W. Global economic–biophysical assessment of midterm scenarios for agricultural markets—biofuel policies, dietary patterns, cropland expansion, and productivity growth. Environ. Res. Lett. 2018;13:025003. doi: 10.1088/1748-9326/aa9da2. DOI
Kehoe L, et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 2017;1:1129–1135. doi: 10.1038/s41559-017-0234-3. PubMed DOI
UNEP-WCMC. World Database on Protected Areas User Manual 1.0.(UNEP-WCMC: Cambridge, 2015.
Kehoe L, et al. Global patterns of agricultural land-use intensity and vertebrate diversity. Divers. Distrib. 2015;21:1308–1318. doi: 10.1111/ddi.12359. DOI
Pradhan P, Fischer G, van Velthuizen H, Reusser DE, Kropp JP. Closing yield gaps: how sustainable can we be? PLOS ONE. 2015;10:e0129487. doi: 10.1371/journal.pone.0129487. PubMed DOI PMC
Henle K, et al. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—a review. Agric., Ecosyst. Environ. 2008;124:60–71. doi: 10.1016/j.agee.2007.09.005. DOI
Tryjanowski P, et al. Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithol. 2011;46:1–12. doi: 10.3161/000164511X589857. DOI
(eds Jarvis, DPadoch, CCooper, H). Managing Biodiversity in Agricultural Ecosystems. (Columbia University Press, New York, 2007) .
Chateil C, et al. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric., Ecosyst. Environ. 2013;171:25–32. doi: 10.1016/j.agee.2013.03.004. DOI
Holt AR, Alix A, Thompson A, Maltby L. Food production, ecosystem services and biodiversity: we can’t have it all everywhere. Sci. Total Environ. 2016;573:1422–1429. doi: 10.1016/j.scitotenv.2016.07.139. PubMed DOI
Alexander P, et al. Assessing uncertainties in land cover projections. Glob. Change Biol. 2016;23:767–781. doi: 10.1111/gcb.13447. PubMed DOI
Prestele R, et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob. Change Biol. 2016;22:3967–3983. doi: 10.1111/gcb.13337. PubMed DOI PMC
Rosen RA. IAMs and peer review. Nat. Clim. Change. 2015;5:390. doi: 10.1038/nclimate2582. DOI
Fritz S, et al. Mapping global cropland and field size. Glob. Change Biol. 2015;21:1980–1992. doi: 10.1111/gcb.12838. PubMed DOI
Licker R, et al. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 2010;19:769–782. doi: 10.1111/j.1466-8238.2010.00563.x. DOI
Hurlbert AH, Jetz W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA. 2007;104:13384–13389. doi: 10.1073/pnas.0704469104. PubMed DOI PMC
Orme CDL, et al. Global hotspots of species richness are not congruent with endemism or threat. Nature. 2005;436:1016. doi: 10.1038/nature03850. PubMed DOI
Margules CR, Pressey RL. Systematic conservation planning. Nature. 2000;405:243. doi: 10.1038/35012251. PubMed DOI
Alkemade R, et al. GLOBIO3: A Framew. Invest. Options Reducing Glob. Terr. Biodivers. Loss. 2009;12:374–390.
Chaplin-Kramer R, et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 2015;6:10158. doi: 10.1038/ncomms10158. PubMed DOI PMC
Fischer J, et al. Land sparing versus land sharing: moving forward. Conserv Lett. 2014;7:149–157. doi: 10.1111/conl.12084. DOI
Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science. 2011;333:1289–1291. doi: 10.1126/science.1208742. PubMed DOI
von Wehrden H, et al. Realigning the land-sharing/land-sparing debate to match conservation needs: considering diversity scales and land-use history. Landsc. Ecol. 2014;29:941–948. doi: 10.1007/s10980-014-0038-7. DOI
Fischer J, et al. Reframing the food-biodiversity challenge. Trends Ecol. Evol. 2017;32:335–345. doi: 10.1016/j.tree.2017.02.009. PubMed DOI
Seppelt R, Lautenbach S, Volk M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 2013;5:458–463. doi: 10.1016/j.cosust.2013.05.002. DOI
Vaclavik T, et al. Investigating potential transferability of place-based research in land system science. Environ. Res. Lett. 2016;11:16. doi: 10.1088/1748-9326/11/9/095002. DOI
Garibaldi LA, et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 2017;32:68–80. doi: 10.1016/j.tree.2016.10.001. PubMed DOI
Henry RC, et al. Food supply and bioenergy production within the global cropland planetary boundary. PLoS One. 2018;13:e0194695. doi: 10.1371/journal.pone.0194695. PubMed DOI PMC
Muri Helene. The role of large—scale BECCS in the pursuit of the 1.5°C target: an Earth system model perspective. Environmental Research Letters. 2018;13(4):044010. doi: 10.1088/1748-9326/aab324. DOI
ESA. Land Cover CCI Version 2. http://maps.elie.ucl.ac.be/CCI/viewer/index.php (2014).
Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision.(FAO, Rome, 2012) .
Hank TB, Bach H, Mauser W. Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: application for wheat in Central Europe. Remote Sens. 2015;7:3934–3965. doi: 10.3390/rs70403934. DOI
IUCN. The IUCN Red List of Threatened Species. http://www.iucnredlist.org/technical-documents/spatial-data (2012).
BirdLife. BirdLife Data Zone. http://www.birdlife.org/datazone/home (2012).
Kier G, et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA. 2009;106:9322–9327. doi: 10.1073/pnas.0810306106. PubMed DOI PMC
Identifying Agricultural Frontiers for Modeling Global Cropland Expansion