Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Azorella glabra Wedd

. 2019 Aug 03 ; 8 (8) : . [epub] 20190803

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31382601

Grantová podpora
DGR n. 1490 del 4/12/2014 Regione Basilicata and Fondazione Enrico Mattei
ALIMINTEGRA ex D.G.R. n° 312/17 CUP: C31G18000210002. GO NUTRIBAS financed on 16.1 PSR Basilicata

Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative diseases. The genus Azorella includes about 70 species of flowering plant species; most of them are commonly used as food and in particular as a tea infusion in the Andean region of South America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts were firstly analyzed for their in vitro antioxidant activity using different complementary assays. In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different assays. Then, the inhibitory ability of samples was investigated against α-amylase and α-glucosidase enzymes involved in diabetes and against acetylcholinesterase and butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson's or Alzheimer's diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and interesting enzymatic activities (IC50 of 163.54 ± 9.72 and 215.29 ± 17.10 μg/mL in α-glucosidase and acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first report about the evaluation of significant biological activities and phytochemical profile of A. glabra, an important source of health-promoting phytochemicals.

Zobrazit více v PubMed

Sung M.H., Kwon O.-K., Oh S.-R., Lee J., Park S.-H., Han S.B., Ahn K.-S. Azorella compacta methanolic extract induces apoptosis via activation of mitogen-activated protein kinase. Mol. Med. Rep. 2015;12:6821–6828. doi: 10.3892/mmr.2015.4317. PubMed DOI

Tůmová L., Dučaiová Z., Cheel J., Vokřál I., Sepúlveda B., Vokurková D. Azorella compacta infusion activates human immune cells and scavenges free radicals in vitro. Pharmacogn. Mag. 2017;13:260. PubMed PMC

Lamorte D., Faraone I., Laurenzana I., Milella L., Trino S., De Luca L., Del Vecchio L., Armentano M., Sinisgalli C., Chiummiento L. Future in the Past: Azorella glabra Wedd. as a source of new natural compounds with antiproliferative and cytotoxic activity on multiple myeloma cells. Int. J. Mol. Sci. 2018;19:3348. doi: 10.3390/ijms19113348. PubMed DOI PMC

Russo D., Valentão P., Andrade P.B., Fernandez E.C., Milella L. Evaluation of antioxidant, antidiabetic and anticholinesterase activities of Smallanthus sonchifolius landraces and correlation with their phytochemical profiles. Int. J. Mol. Sci. 2015;16:17696–17718. doi: 10.3390/ijms160817696. PubMed DOI PMC

Aryal S., Baniya M.K., Danekhu K., Kunwar P., Gurung R., Koirala N. Total phenolic content, flavonoid content and antioxidant potential of Wild vegetables from Western Nepal. Plants. 2019;8:96. doi: 10.3390/plants8040096. PubMed DOI PMC

Saltos M.B.V., Puente B.F.N., Faraone I., Milella L., De Tommasi N., Braca A. Inhibitors of α-amylase and α-glucosidase from Andromachia igniaria Humb. & Bonpl. Phytochem. Lett. 2015;14:45–50.

Faraone I., Rai D., Chiummiento L., Fernandez E., Choudhary A., Prinzo F., Milella L. Antioxidant activity and phytochemical characterization of Senecio clivicolus Wedd. Molecules. 2018;23:2497. doi: 10.3390/molecules23102497. PubMed DOI PMC

Areche C., Cejas P., Thomas P., San-Martín A., Astudillo L., Gutiérrez M., Loyola L.A. Triterpenoids from Azorella trifurcata (Gaertn.) Pers and their effect against the enzyme acetylcholinesterase. Quim. Nova. 2009;32:2023–2025. doi: 10.1590/S0100-40422009000800008. DOI

Loyola L.A., Bórquez J., Morales G., San-Martín A., Darias J., Flores N., Giménez A. Mulinane-type diterpenoids from Azorella compacta display antiplasmodial activity. Phytochemistry. 2004;65:1931–1935. doi: 10.1016/j.phytochem.2004.06.011. PubMed DOI

Bórquez J., Kennelly E.J., Simirgiotis M.J. Activity guided isolation of isoflavones and hyphenated HPLC-PDA-ESI-ToF-MS metabolome profiling of Azorella madreporica Clos. from northern Chile. Food Res. Int. 2013;52:288–297. doi: 10.1016/j.foodres.2013.02.055. DOI

Nakamura M., Ra J.-H., Jee Y., Kim J.-S. Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J. Food Drug Anal. 2017;25:316–326. doi: 10.1016/j.jfda.2016.08.006. PubMed DOI PMC

Fuentes N.L., Sagua H., Morales G., Borquez J., Martin A.S., Soto J., Loyola L.A. Experimental antihyperglycemic effect of diterpenoids of llareta Azorella compacta (Umbelliferae) Phil in rats. Phytother. Res. 2005;19:713–716. doi: 10.1002/ptr.1740. PubMed DOI

Prabhakar P., Doble M. Mechanism of action of medicinal plants towards diabetes mellitus-a review. Rec. Prog. Med. Plants. 2008;22:181–204.

Wang H., Nair M.G., Strasburg G.M., Booren A.M., Gray J.I. Novel antioxidant compounds from Tart cherries (Prunus cerasus) J. Nat. Prod. 1999;62:86–88. doi: 10.1021/np980268s. PubMed DOI

McDonald S., Prenzler P.D., Antolovich M., Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001;73:73–84. doi: 10.1016/S0308-8146(00)00288-0. DOI

Hung T.M., Na M., Thuong P.T., Su N.D., Sok D., Song K.S., Seong Y.H., Bae K. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J. Ethnopharmacol. 2006;108:188–192. doi: 10.1016/j.jep.2006.04.029. PubMed DOI

Yang J., Guo J., Yuan J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008;41:1060–1066. doi: 10.1016/j.lwt.2007.06.010. DOI

Razavi S.M., Zahri S., Zarrini G., Nazemiyeh H., Mohammadi S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Russ. J. Bioorg. Chem. 2009;35:376–378. doi: 10.1134/S1068162009030133. PubMed DOI

Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., FangFang X., Modarresi-Ghazani F. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018;97:67–74. doi: 10.1016/j.biopha.2017.10.064. PubMed DOI

Mykhailenko O., Kovalyov V., Goryacha O., Ivanauskas L., Georgiyants V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry. 2019;162:56–89. doi: 10.1016/j.phytochem.2019.02.004. PubMed DOI

López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini-Rev. Med. Chem. 2009;9:31–59. doi: 10.2174/138955709787001712. PubMed DOI

Uma Devi P., Ganasoundari A., Vrinda B., Srinivasan K., Unnikrishnan M. Radiation protection by the Ocimum flavonoids orientin and vicenin: Mechanisms of action. Radiat. Res. 2000;154:455–460. doi: 10.1667/0033-7587(2000)154[0455:RPBTOF]2.0.CO;2. PubMed DOI

Han J., Ye M., Qiao X., Xu M., Wang B.-R., Guo D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008;47:516–525. doi: 10.1016/j.jpba.2008.02.013. PubMed DOI

Clifford M.N., Johnston K.L., Knight S., Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003;51:2900–2911. doi: 10.1021/jf026187q. PubMed DOI

Hossain M.B., Rai D.K., Brunton N.P., Martin-Diana A.B., Barry-Ryan C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010;58:10576–10581. doi: 10.1021/jf102042g. PubMed DOI

Araujo N., Mü Ller R., Nowicki C., Ibisch P. Análisis de Vacíos de Representatividad del Sistema Nacional de Áreas Protegidas. FAN; Santa Cruz, CA, USA: 2005.

Krzyzanowska-Kowalczyk J., Pecio Ł., Mołdoch J., Ludwiczuk A., Kowalczyk M. Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS comparison of Spring and Autumn metabolite profiles. Molecules. 2018;23:2277. doi: 10.3390/molecules23092277. PubMed DOI PMC

Iswaldi I., Arráez-Román D., Rodríguez-Medina I., Beltrán-Debón R., Joven J., Segura-Carretero A., Fernández-Gutiérrez A. Identification of phenolic compounds in aqueous and ethanolic rooibos extracts (Aspalathus linearis) by HPLC-ESI-MS (TOF/IT) Anal. Bioanal. Chem. 2011;400:3643–3654. doi: 10.1007/s00216-011-4998-z. PubMed DOI

Ferracane R., Graziani G., Gallo M., Fogliano V., Ritieni A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010;51:399–404. doi: 10.1016/j.jpba.2009.03.018. PubMed DOI

Ibrahim R.M., El-Halawany A.M., Saleh D.O., El Naggar E.M.B., El-Shabrawy A.E.-R.O., El-Hawary S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farmacogn. 2015;25:134–141. doi: 10.1016/j.bjp.2015.02.008. DOI

Kontogianni V.G., Tomic G., Nikolic I., Nerantzaki A.A., Sayyad N., Stosic-Grujicic S., Stojanovic I., Gerothanassis I.P., Tzakos A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013;136:120–129. doi: 10.1016/j.foodchem.2012.07.091. PubMed DOI

Cid-Pérez T.S., Ávila-Sosa R., Ochoa-Velasco C.E., Rivera-Chavira B.E., Nevárez-Moorillón G.V. Antioxidant and antimicrobial activity of Mexican Oregano (Poliomintha longiflora) essential oil, hydrosol and extracts from waste solid residues. Plants. 2019;8:22. doi: 10.3390/plants8010022. PubMed DOI PMC

Naznin M.T., Lefsrud M., Gravel V., Azad M.O.K. Blue light added with Red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants. 2019;8:93. doi: 10.3390/plants8040093. PubMed DOI PMC

Milella L., Milazzo S., De Leo M., Vera Saltos M.B., Faraone I., Tuccinardi T., Lapillo M., De Tommasi N., Braca A. α-Glucosidase and α-amylase inhibitors from Arcytophyllum thymifolium. J. Nat. Prod. 2016;79:2104–2112. doi: 10.1021/acs.jnatprod.6b00484. PubMed DOI

D’Errico S., Oliviero G., Borbone N., Amato J., D’Alonzo D., Piccialli V., Mayol L., Piccialli G. A facile synthesis of 5′-Fluoro-5′-deoxyacadesine (5′-F-AICAR): A novel non-phosphorylable AICAR Analogue. Molecules. 2012;17:13036–13044. doi: 10.3390/molecules171113036. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phytochemicals of Minthostachys diffusa Epling and Their Health-Promoting Bioactivities

. 2020 Feb 01 ; 9 (2) : . [epub] 20200201

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...