Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Azorella glabra Wedd
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DGR n. 1490 del 4/12/2014
Regione Basilicata and Fondazione Enrico Mattei
ALIMINTEGRA ex D.G.R. n° 312/17 CUP: C31G18000210002.
GO NUTRIBAS financed on 16.1 PSR Basilicata
PubMed
31382601
PubMed Central
PMC6724412
DOI
10.3390/plants8080265
PII: plants8080265
Knihovny.cz E-zdroje
- Klíčová slova
- Apiaceae, Azorella glabra, Beta-Carotene Bleaching, DPPH, RACI, UHPLC-MS/MS, flavonoids, health-promoting compounds, phenolic characterization, polyphenols,
- Publikační typ
- časopisecké články MeSH
Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative diseases. The genus Azorella includes about 70 species of flowering plant species; most of them are commonly used as food and in particular as a tea infusion in the Andean region of South America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts were firstly analyzed for their in vitro antioxidant activity using different complementary assays. In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different assays. Then, the inhibitory ability of samples was investigated against α-amylase and α-glucosidase enzymes involved in diabetes and against acetylcholinesterase and butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson's or Alzheimer's diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and interesting enzymatic activities (IC50 of 163.54 ± 9.72 and 215.29 ± 17.10 μg/mL in α-glucosidase and acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first report about the evaluation of significant biological activities and phytochemical profile of A. glabra, an important source of health-promoting phytochemicals.
Department of Food BioSciences Teagasc Food Research Centre Ashtown Dublin D15KN3K Ireland
Department of Science University of Basilicata 5 le dell'Ateneo Lucano 10 85100 Potenza Italy
Spinoff BioActiPlant s r l University of Basilicata 5 le dell'Ateneo Lucano 10 85100 Potenza Italy
Zobrazit více v PubMed
Sung M.H., Kwon O.-K., Oh S.-R., Lee J., Park S.-H., Han S.B., Ahn K.-S. Azorella compacta methanolic extract induces apoptosis via activation of mitogen-activated protein kinase. Mol. Med. Rep. 2015;12:6821–6828. doi: 10.3892/mmr.2015.4317. PubMed DOI
Tůmová L., Dučaiová Z., Cheel J., Vokřál I., Sepúlveda B., Vokurková D. Azorella compacta infusion activates human immune cells and scavenges free radicals in vitro. Pharmacogn. Mag. 2017;13:260. PubMed PMC
Lamorte D., Faraone I., Laurenzana I., Milella L., Trino S., De Luca L., Del Vecchio L., Armentano M., Sinisgalli C., Chiummiento L. Future in the Past: Azorella glabra Wedd. as a source of new natural compounds with antiproliferative and cytotoxic activity on multiple myeloma cells. Int. J. Mol. Sci. 2018;19:3348. doi: 10.3390/ijms19113348. PubMed DOI PMC
Russo D., Valentão P., Andrade P.B., Fernandez E.C., Milella L. Evaluation of antioxidant, antidiabetic and anticholinesterase activities of Smallanthus sonchifolius landraces and correlation with their phytochemical profiles. Int. J. Mol. Sci. 2015;16:17696–17718. doi: 10.3390/ijms160817696. PubMed DOI PMC
Aryal S., Baniya M.K., Danekhu K., Kunwar P., Gurung R., Koirala N. Total phenolic content, flavonoid content and antioxidant potential of Wild vegetables from Western Nepal. Plants. 2019;8:96. doi: 10.3390/plants8040096. PubMed DOI PMC
Saltos M.B.V., Puente B.F.N., Faraone I., Milella L., De Tommasi N., Braca A. Inhibitors of α-amylase and α-glucosidase from Andromachia igniaria Humb. & Bonpl. Phytochem. Lett. 2015;14:45–50.
Faraone I., Rai D., Chiummiento L., Fernandez E., Choudhary A., Prinzo F., Milella L. Antioxidant activity and phytochemical characterization of Senecio clivicolus Wedd. Molecules. 2018;23:2497. doi: 10.3390/molecules23102497. PubMed DOI PMC
Areche C., Cejas P., Thomas P., San-Martín A., Astudillo L., Gutiérrez M., Loyola L.A. Triterpenoids from Azorella trifurcata (Gaertn.) Pers and their effect against the enzyme acetylcholinesterase. Quim. Nova. 2009;32:2023–2025. doi: 10.1590/S0100-40422009000800008. DOI
Loyola L.A., Bórquez J., Morales G., San-Martín A., Darias J., Flores N., Giménez A. Mulinane-type diterpenoids from Azorella compacta display antiplasmodial activity. Phytochemistry. 2004;65:1931–1935. doi: 10.1016/j.phytochem.2004.06.011. PubMed DOI
Bórquez J., Kennelly E.J., Simirgiotis M.J. Activity guided isolation of isoflavones and hyphenated HPLC-PDA-ESI-ToF-MS metabolome profiling of Azorella madreporica Clos. from northern Chile. Food Res. Int. 2013;52:288–297. doi: 10.1016/j.foodres.2013.02.055. DOI
Nakamura M., Ra J.-H., Jee Y., Kim J.-S. Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J. Food Drug Anal. 2017;25:316–326. doi: 10.1016/j.jfda.2016.08.006. PubMed DOI PMC
Fuentes N.L., Sagua H., Morales G., Borquez J., Martin A.S., Soto J., Loyola L.A. Experimental antihyperglycemic effect of diterpenoids of llareta Azorella compacta (Umbelliferae) Phil in rats. Phytother. Res. 2005;19:713–716. doi: 10.1002/ptr.1740. PubMed DOI
Prabhakar P., Doble M. Mechanism of action of medicinal plants towards diabetes mellitus-a review. Rec. Prog. Med. Plants. 2008;22:181–204.
Wang H., Nair M.G., Strasburg G.M., Booren A.M., Gray J.I. Novel antioxidant compounds from Tart cherries (Prunus cerasus) J. Nat. Prod. 1999;62:86–88. doi: 10.1021/np980268s. PubMed DOI
McDonald S., Prenzler P.D., Antolovich M., Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001;73:73–84. doi: 10.1016/S0308-8146(00)00288-0. DOI
Hung T.M., Na M., Thuong P.T., Su N.D., Sok D., Song K.S., Seong Y.H., Bae K. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J. Ethnopharmacol. 2006;108:188–192. doi: 10.1016/j.jep.2006.04.029. PubMed DOI
Yang J., Guo J., Yuan J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008;41:1060–1066. doi: 10.1016/j.lwt.2007.06.010. DOI
Razavi S.M., Zahri S., Zarrini G., Nazemiyeh H., Mohammadi S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Russ. J. Bioorg. Chem. 2009;35:376–378. doi: 10.1134/S1068162009030133. PubMed DOI
Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., FangFang X., Modarresi-Ghazani F. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018;97:67–74. doi: 10.1016/j.biopha.2017.10.064. PubMed DOI
Mykhailenko O., Kovalyov V., Goryacha O., Ivanauskas L., Georgiyants V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry. 2019;162:56–89. doi: 10.1016/j.phytochem.2019.02.004. PubMed DOI
López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini-Rev. Med. Chem. 2009;9:31–59. doi: 10.2174/138955709787001712. PubMed DOI
Uma Devi P., Ganasoundari A., Vrinda B., Srinivasan K., Unnikrishnan M. Radiation protection by the Ocimum flavonoids orientin and vicenin: Mechanisms of action. Radiat. Res. 2000;154:455–460. doi: 10.1667/0033-7587(2000)154[0455:RPBTOF]2.0.CO;2. PubMed DOI
Han J., Ye M., Qiao X., Xu M., Wang B.-R., Guo D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008;47:516–525. doi: 10.1016/j.jpba.2008.02.013. PubMed DOI
Clifford M.N., Johnston K.L., Knight S., Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003;51:2900–2911. doi: 10.1021/jf026187q. PubMed DOI
Hossain M.B., Rai D.K., Brunton N.P., Martin-Diana A.B., Barry-Ryan C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010;58:10576–10581. doi: 10.1021/jf102042g. PubMed DOI
Araujo N., Mü Ller R., Nowicki C., Ibisch P. Análisis de Vacíos de Representatividad del Sistema Nacional de Áreas Protegidas. FAN; Santa Cruz, CA, USA: 2005.
Krzyzanowska-Kowalczyk J., Pecio Ł., Mołdoch J., Ludwiczuk A., Kowalczyk M. Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS comparison of Spring and Autumn metabolite profiles. Molecules. 2018;23:2277. doi: 10.3390/molecules23092277. PubMed DOI PMC
Iswaldi I., Arráez-Román D., Rodríguez-Medina I., Beltrán-Debón R., Joven J., Segura-Carretero A., Fernández-Gutiérrez A. Identification of phenolic compounds in aqueous and ethanolic rooibos extracts (Aspalathus linearis) by HPLC-ESI-MS (TOF/IT) Anal. Bioanal. Chem. 2011;400:3643–3654. doi: 10.1007/s00216-011-4998-z. PubMed DOI
Ferracane R., Graziani G., Gallo M., Fogliano V., Ritieni A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010;51:399–404. doi: 10.1016/j.jpba.2009.03.018. PubMed DOI
Ibrahim R.M., El-Halawany A.M., Saleh D.O., El Naggar E.M.B., El-Shabrawy A.E.-R.O., El-Hawary S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farmacogn. 2015;25:134–141. doi: 10.1016/j.bjp.2015.02.008. DOI
Kontogianni V.G., Tomic G., Nikolic I., Nerantzaki A.A., Sayyad N., Stosic-Grujicic S., Stojanovic I., Gerothanassis I.P., Tzakos A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013;136:120–129. doi: 10.1016/j.foodchem.2012.07.091. PubMed DOI
Cid-Pérez T.S., Ávila-Sosa R., Ochoa-Velasco C.E., Rivera-Chavira B.E., Nevárez-Moorillón G.V. Antioxidant and antimicrobial activity of Mexican Oregano (Poliomintha longiflora) essential oil, hydrosol and extracts from waste solid residues. Plants. 2019;8:22. doi: 10.3390/plants8010022. PubMed DOI PMC
Naznin M.T., Lefsrud M., Gravel V., Azad M.O.K. Blue light added with Red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants. 2019;8:93. doi: 10.3390/plants8040093. PubMed DOI PMC
Milella L., Milazzo S., De Leo M., Vera Saltos M.B., Faraone I., Tuccinardi T., Lapillo M., De Tommasi N., Braca A. α-Glucosidase and α-amylase inhibitors from Arcytophyllum thymifolium. J. Nat. Prod. 2016;79:2104–2112. doi: 10.1021/acs.jnatprod.6b00484. PubMed DOI
D’Errico S., Oliviero G., Borbone N., Amato J., D’Alonzo D., Piccialli V., Mayol L., Piccialli G. A facile synthesis of 5′-Fluoro-5′-deoxyacadesine (5′-F-AICAR): A novel non-phosphorylable AICAR Analogue. Molecules. 2012;17:13036–13044. doi: 10.3390/molecules171113036. PubMed DOI PMC