Phytochemicals of Minthostachys diffusa Epling and Their Health-Promoting Bioactivities

. 2020 Feb 01 ; 9 (2) : . [epub] 20200201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32024045

Grantová podpora
D.G.R. n° 312/17 CUP: C31G18000210002. Regione Basilicata

The genus Minthostachys belonging to the Lamiaceae family, and is an important South American mint genus used commonly in folk medicine as an aroma in cooking. The phytochemical-rich samples of the aerial parts of Minthostachys diffusa Epling. were tested for pharmacological and health-promoting bioactivities using in vitro chemical and enzymatic assays. A range of radical scavenging activities of the samples against biological radicals such as nitric oxide and superoxide anion and against synthetic 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, the ferric reducing antioxidant power and the lipid peroxidation inhibition were determined and ranked using the 'relative antioxidant capacity index' (RACI). The ethyl acetate fraction showed the highest RACI of +1.12. Analysis of the various fractions' inhibitory ability against enzymes involved in diabetes (α-amylase and α-glucosidase), and against enzymes associated with Parkinson's or Alzheimer's diseases (acetylcholinesterase and butyrylcholinesterase) also suggested that the ethyl acetate fraction was the most active. Liquid chromatography-tandem mass spectrometry analysis of the ethyl acetate fraction showed more than 30 polyphenolic compounds, including triterpenes. The inhibitory cholinesterase effects of the triterpenes identified from M. diffusa were further analysed by in silico docking of these compounds into 3D-structures of acetylcholinesterase and butyrylcholinesterase. This is the first study on pharmacological activities and phytochemical profiling of the aerial parts of M. diffusa, showing that this plant, normally used as food in South America, is also rich in health-promoting phytochemicals.

Zobrazit více v PubMed

Buchanan B.B., Gruissem W., Jones R.L. Biochemistry & Molecular Biology of Plants. Volume 40 American Society of Plant Physiologists; Rockville, MD, USA: 2000.

Bourgaud F., Gravot A., Milesi S., Gontier E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001;161:839–851. doi: 10.1016/S0168-9452(01)00490-3. DOI

Pinakin D.J., Kumar V., Suri S., Sharma R., Kaushal M. Nutraceutical potential of tree flowers: A comprehensive review on biochemical profile, health benefits, and utilization. Food Res. Int. 2020;127:108724. doi: 10.1016/j.foodres.2019.108724. PubMed DOI

Tang G.-Y., Meng X., Gan R.-Y., Zhao C.-N., Liu Q., Feng Y.-B., Li S., Wei X.-L., Atanasov A.G., Corke H., et al. Health functions and related molecular mechanisms of tea components: An update review. Int. J. Mol. Sci. 2019;20:6196. doi: 10.3390/ijms20246196. PubMed DOI PMC

Abdalla M.A., Zidorn C. The genus Tragopogon (asteraceae): A review of its traditional uses, phytochemistry, and pharmacological properties. J. Ethnopharmacol. 2020;250:112466. doi: 10.1016/j.jep.2019.112466. PubMed DOI

Schmidt-Lebuhn A.N. Ethnobotany, biochemistry and pharmacology of Minthostachys (Lamiaceae) J. Ethnopharmacol. 2008;118:343–353. doi: 10.1016/j.jep.2008.05.030. PubMed DOI

Lock O., Perez E., Villar M., Flores D., Rojas R. Bioactive compounds from plants used in Peruvian traditional medicine. Nat. Prod. Commun. 2016;11:315–337. PubMed

Cariddi L., Escobar F., Moser M., Panero A., Alaniz F., Zygadlo J., Sabini L., Maldonado A. Monoterpenes isolated from Minthostachys verticillata (Griseb.) Epling essential oil modulates immediate-type hypersensitivity responses in vitro and in vivo. Planta Med. 2011;77:1687–1694. doi: 10.1055/s-0030-1271090. PubMed DOI

Montironi I.D., Cariddi L.N., Reinoso E.B. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev. Argent. Microbiol. 2016;48:210–216. doi: 10.1016/j.ram.2016.04.005. PubMed DOI

Mora F.D., Araque M., Rojas L.B., Ramirez R., Silva B., Usubillaga A. Chemical composition and in vitro antibacterial activity of the essential oil of Minthostachys mollis (Kunth) Griseb Vaught from the Venezuelan Andes. Nat. Prod. Commun. 2009;4:997–1000. doi: 10.1177/1934578X0900400726. PubMed DOI

Cantín Á., Lull C., Primo J., Miranda M.A., Primo-Yúfera E. Isolation, structural assignment and insecticidal activity of (−)-(1S,2R,3R,4S)-1,2-Epoxy-1-methyl-4-(1-methylethyl)-cyclohex-3-yl acetate, a natural product from Minthostachys tomentosa. Tetrahedron Asymmetry. 2001;12:677–683.

Roberts R.O., Knopman D.S., Przybelski S.A., Mielke M.M., Kantarci K., Preboske G.M., Senjem M.L., Pankratz V.S., Geda Y.E., Boeve B.F., et al. Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology. 2014;82:1132. doi: 10.1212/WNL.0000000000000269. PubMed DOI PMC

Aguirre-Acevedo D.C., Lopera F., Henao E., Tirado V., Muñoz C., Giraldo M., Bangdiwala S.I., Reiman E.M., Tariot P.N., Langbaum J.B., et al. Cognitive decline in a colombian kindred with autosomal dominant Alzheimer disease: A retrospective cohort study. JAMA Neurol. 2016;73:431–438. doi: 10.1001/jamaneurol.2015.4851. PubMed DOI PMC

Redondo M.T., Beltrán-Brotóns J.L., Reales J.M., Ballesteros S. Executive functions in patients with Alzheimer’s disease, type 2 diabetes mellitus patients and cognitively healthy older adults. Exp. Gerontol. 2016;83:47–55. doi: 10.1016/j.exger.2016.07.013. PubMed DOI

Faraone I., Rai D., Chiummiento L., Fernandez E., Choudhary A., Prinzo F., Milella L. Antioxidant activity and phytochemical characterization of Senecio clivicolus Wedd. Molecules. 2018;23:2497. doi: 10.3390/molecules23102497. PubMed DOI PMC

Lamorte D., Faraone I., Laurenzana I., Milella L., Trino S., De Luca L., Del Vecchio L., Armentano M., Sinisgalli C., Chiummiento L. Future in the past: Azorella glabra Wedd. as a source of new natural compounds with antiproliferative and cytotoxic activity on Multiple Myeloma cells. Int. J. Mol. Sci. 2018;19:3348. doi: 10.3390/ijms19113348. PubMed DOI PMC

Faraone I., Rai D.K., Russo D., Chiummiento L., Fernandez E., Choudhary A., Milella L. Antioxidant, Aantidiabetic, and Aanticholinesterase Aactivities and Pphytochemical Pprofile of Azorella glabra Wedd. Plants. 2019;8:265. doi: 10.3390/plants8080265. PubMed DOI PMC

Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152–178.

Lin J.-Y., Tang C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007;101:140–147. doi: 10.1016/j.foodchem.2006.01.014. DOI

Chakraborty S., Guchhait S., Saha S., Biswas S. Estimation of total terpenoids concentration in plant tissues using a monoterpene, linalool as standard reagent. Protoc. Exch. 2012;5:1038.

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI

Stratil P., Klejdus B., Kubáň V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006;54:607–616. doi: 10.1021/jf052334j. PubMed DOI

Fidelis Q.C., Faraone I., Russo D., Aragão Catunda F.E., Jr., Vignola L., de Carvalho M.G., De Tommasi N., Milella L. Chemical and biological insights of Ouratea hexasperma (A. St.-Hil.) Baill.: A source of bioactive compounds with multifunctional properties. Nat. Prod. Res. 2019;33:1500–1503. doi: 10.1080/14786419.2017.1419227. PubMed DOI

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Krieger E., Joo K., Lee J., Lee J., Raman S., Thompson J., Tyka M., Baker D., Karplus K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinform. 2009;77:114–122. doi: 10.1002/prot.22570. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Palacios S.M., del Corral S., Carpinella M.C., Ruiz G. Screening for natural inhibitors of germination and seedling growth in native plants from Central Argentina. Ind. Crops Prod. 2010;32:674–677. doi: 10.1016/j.indcrop.2010.05.004. DOI

Vaquero M.R., Serravalle L.T., De Nadra M.M., De Saad A.S. Antioxidant capacity and antibacterial activity of phenolic compounds from Argentinean herbs infusions. Food Control. 2010;21:779–785. doi: 10.1016/j.foodcont.2009.10.017. DOI

Solis-Quispe L., Tomaylla-Cruz C., Callo-Choquelvica Y., Solís-Quispe A., Rodeiro I., Hernández I., Fernández M.D., Pino J.A. Chemical composition, antioxidant and antiproliferative activities of essential oil from Schinus areira L. and Minthostachys spicata (Benth.) Epl. grown in Cuzco, Peru. J. Essent. Oil Res. 2016;28:234–240. doi: 10.1080/10412905.2015.1120691. DOI

Carpinella M.C., Andrione D.G., Ruiz G., Palacios S.M. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phytother. Res. 2010;24:259–263. doi: 10.1002/ptr.2923. PubMed DOI

Savelev S.U., Okello E.J., Perry E.K. Butyryl-and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytother. Res. 2004;18:315–324. doi: 10.1002/ptr.1451. PubMed DOI

Mukherjee P.K., Kumar V., Mal M., Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14:289–300. doi: 10.1016/j.phymed.2007.02.002. PubMed DOI

Alkire B.H., Tucker A.O., Maciarello M.J. Tipo, Minthostachys mollis (lamiaceae): An Ecuadorian mint. Econ. Bot. 1994;48:60–64. doi: 10.1007/BF02901380. DOI

Senatore F. Composition of the essential oil of Minthostachys spicata (Benth.) Epl. Flavour Fragr. J. 1995;10:43–45. doi: 10.1002/ffj.2730100107. DOI

López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009;9:31–59. doi: 10.2174/138955709787001712. PubMed DOI

Uma Devi P., Ganasoundari A., Vrinda B., Srinivasan K., Unnikrishnan M. Radiation protection by the Ocimum flavonoids orientin and vicenin: Mechanisms of action. Radiat. Res. 2000;154:455–460. doi: 10.1667/0033-7587(2000)154[0455:RPBTOF]2.0.CO;2. PubMed DOI

Leal A.S.M. Ph.D. Thesis. Universidade de Coimbra; Coimbra, Portugal: 2012. Preparation and biological evaluation of new triterpene derivates of ursolic and oleanolic acid.

Sultana N. Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J. Enzym. Inhib. Med. Chem. 2011;26:616–642. doi: 10.3109/14756366.2010.546793. PubMed DOI

Jamila N., Khairuddean M., Yeong K.K., Osman H., urugaiyah V. Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana. J. Enzym. Inhib. Med. Chem. 2015;30:133–139. doi: 10.3109/14756366.2014.895720. PubMed DOI

Ruhal P., Dhingra D. Ameliorative effect of betulinic acid on ageing and scopolamine-induced learning and memory impairment in rats. Asian J. Pharm. Pharmacol. 2018;4:825–841. doi: 10.31024/ajpp.2018.4.6.17. DOI

Öztürk M., Kolak U., Topçu G., Öksüz S., Choudhary M.I. Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food Chem. 2011;126:31–38. doi: 10.1016/j.foodchem.2010.10.050. DOI

Bahadori M.B., Dinparast L., Valizadeh H., Farimani M.M., Ebrahimi S.N. Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. South Afr. J. Bot. 2016;106:1–4. doi: 10.1016/j.sajb.2015.12.003. DOI

Geromichalos G.D., Lamari F.N., Papandreou M.A., Trafalis D.T., Margarity M., Papageorgiou A., Sinakos Z. Saffron as a source of novel acetylcholinesterase inhibitors: Molecular docking and in vitro enzymatic studies. J. Agric. Food Chem. 2012;60:6131–6138. doi: 10.1021/jf300589c. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace