Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd

. 2018 Sep 29 ; 23 (10) : . [epub] 20180929

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30274255

Grantová podpora
D.G.R. 1490 of 4/12/2014 Regione Basilicata

Antioxidant phytochemicals play a key role in oxidative stress control and in the prevention of related disorders, such as premature aging, degenerative diseases, diabetes, and cancer. The aim of this study was to investigate the potential antioxidant activity and the phytochemical profile of Senecio clivicolus Wedd., a perennial shrub, belonging to the Asteraceae family. Despite the wide interest of this family, this specie has not been investigated yet. S. clivicolus aerial parts were extracted with 96% ethanol. Then, the ethanol extract was fractionated by liquid/liquid extraction using an increasing solvents polarity. Total polyphenol and terpenoid contents were measured. Moreover, the antioxidant activity was evaluated by six different complementary in vitro assays. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different tests. The sample showing the highest RACI was subjected to characterization and quantitation of its phenolic composition using LC-MS/MS analysis. The ethyl acetate fraction, investigated by LC-MS/MS analysis, showed 30 compounds, most of them are chlorogenic acid and flavonoid derivatives. To the best of our knowledge, this is the first report about the evaluation of antioxidant activity and phytochemical profile of S. clivicolus, underlying the importance of this species as a source of health-promoting phytochemicals.

Zobrazit více v PubMed

Patel Rajesh M., Patel Natvar J. In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods. J. Adv. Pharm. Educ. Res. 2011;1:52–68.

Milutinović V., Niketić M., Ušjak L., Nikolić D., Krunić A., Zidorn C., Petrović S. Methanol extracts of 28 Hieracium species from the Balkan Peninsula–Comparative LC–MS analysis, chemosystematic evaluation of their flavonoid and phenolic acid profiles and antioxidant potentials. Phytochem. Anal. 2018;29:30–47. doi: 10.1002/pca.2712. PubMed DOI

Pizarro J.G., Folch J., Vazquez De la Torre A., Verdaguer E., Junyent F., Jordán J., Pallas M., Camins A. Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radic. Res. 2009;43:985–994. doi: 10.1080/10715760903159188. PubMed DOI

Scalbert A., Manach C., Morand C., Rémésy C., Jiménez L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. 2005;45:287–306. doi: 10.1080/1040869059096. PubMed DOI

Sakagami H., Satoh K., Hatano T., Yoshida T., Okuda T. Possible role of radical intensity and oxidation potential for gallic acid-induced apoptosis. Anticancer Res. 1997;17:377–380. PubMed

Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC

Araujo N., Mü Ller R., Nowicki C., Ibisch P. Análisis de Vacíos de Representatividad del Sistema Nacional de Áreas Protegidas. FAN; Santa Cruz, CA, USA: 2005.

Deharo E., Bourdy G., Quenevo C., Munoz V., Ruiz G., Sauvain M. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians. J. Ethnopharmacol. 2001;77:91–98. doi: 10.1016/S0378-8741(01)00270-7. PubMed DOI

Muñoz V., Sauvain M., Bourdy G., Callapa J., Bergeron S., Rojas I., Bravo J., Balderrama L., Ortiz B., Gimenez A. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach: Part I. Evaluation of the antimalarial activity of plants used by the Chacobo Indians. J. Ethnopharmacol. 2000;69:127–137. doi: 10.1016/S0378-8741(99)00148-8. PubMed DOI

Bourdy G., Oporto P., Gimenez A., Deharo E. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach: Part VI. Evaluation of the antimalarial activity of plants used by Isoceno-Guaranı Indians. J. Ethnopharmacol. 2004;93:269–277. doi: 10.1016/j.jep.2004.03.045. PubMed DOI

Macía M.J., García E., Vidaurre P.J. An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. J. Ethnopharmacol. 2005;97:337–350. doi: 10.1016/j.jep.2004.11.022. PubMed DOI

Thomas E., Semo L., Morales M., Noza Z., Nuñez H., Cayuba A., Noza M., Humaday N., Vaya J., Van Damme P. Ethnomedicinal practices and medicinal plant knowledge of the Yuracarés and Trinitarios from indigenous territory and national park Isiboro-Sécure, Bolivian Amazon. J. Ethnopharmacol. 2011;133:153–163. doi: 10.1016/j.jep.2010.09.017. PubMed DOI

Hajdu Z., Hohmann J. An ethnopharmacological survey of the traditional medicine utilized in the community of Porvenir, Bajo Paraguá Indian Reservation, Bolivia. J. Ethnopharmacol. 2012;139:838–857. doi: 10.1016/j.jep.2011.12.029. PubMed DOI

Floegel A., Kim D.O., Chung S.J., Koo S.I., Chun O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Comp. Anal. 2011;24:1043–1048. doi: 10.1016/j.jfca.2011.01.008. DOI

Fournet A., Barrios A.A., Munoz V. Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. J. Ethnopharmacol. 1994;41:19–37. doi: 10.1016/0378-8741(94)90054-X. PubMed DOI

Bustamante G., Escalante L., Mejia U., Valdivia M., Soria I. Estudio Etnobotánico y Actividad Antimicrobiana de las Plantas Medicinales de los Valles Bajos de Cochabamba. Volume 78 Universidad Mayor de San Simón; Cochabamba, Bolivia: 2001.

Pelser P.B., Nordenstam B., Kadereit J.W., Watson L.E. An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon. 2007;56:1077–1104. doi: 10.2307/25065905. DOI

Sánchez-Muñoz B.A., Aguilar M.I., King-Díaz B., Rivero J.F., Lotina-Hennsen B. The sesquiterpenes β-caryophyllene and caryophyllene oxide isolated from Senecio salignus act as phytogrowth and photosynthesis inhibitors. Molecules. 2012;17:1437–1447. doi: 10.3390/molecules17021437. PubMed DOI PMC

Oladipupo L., Adebola O. Chemical composition of the essential oils of the flowers, leaves and stems of two Senecio polyanthemoides Sch. Bip. samples from South Africa. Molecules. 2009;14:2077–2086. doi: 10.3390/molecules14062077. PubMed DOI PMC

Balzaretti V., Arancibia A., Marchiaro A., Arce M., Feijóo M. Variation in the composition of the essential oil of Senecio filaginoides DC. Molecules. 2000;5:459–461. doi: 10.3390/50300459. DOI

Krasovskaya N., Kulesh N., Denisenko V. Natural antioxidants. Furanoeremophilanes from Cacalia roots. Chem. Nat. Compd. 1989;25:545–548. doi: 10.1007/BF00598072. DOI

Milella L., Bader A., De Tommasi N., Russo D., Braca A. Antioxidant and free radical-scavenging activity of constituents from two Scorzonera species. Food Chem. 2014;160:298–304. doi: 10.1016/j.foodchem.2014.03.097. PubMed DOI

Saltos M.B.V., Puente B.F.N., Faraone I., Milella L., De Tommasi N., Braca A. Inhibitors of α-amylase and α-glucosidase from Andromachia igniaria Humb. & Bonpl. Phytochem. Lett. 2015;14:45–50. doi: 10.1016/j.phytol.2015.08.018. DOI

Fraige K., Dametto A.C., Zeraik M.L., de Freitas L., Saraiva A.C., Medeiros A.I., Castro-Gamboa I., Cavalheiro A.J., Silva D.H.S., Lopes N.P. Dereplication by HPLC-DAD-ESI-MS/MS and screening for biological activities of Byrsonima species (Malpighiaceae) Phytochem. Anal. 2018;29:196–204. doi: 10.1002/pca.2734. PubMed DOI

Dávila M., Sterner O., Hinojosa N. Revista Boliviana de Química. Volume 30. Universidad Mayor de San Andrés; San Andrés, Bolivia: 2013. Furanoeremophilanes from Senecio clivicolus Wedd. pp. 80–83.

Lienou L.L., Telefo P.B., Bayala B., Yemele D.M., Lemfack M.C., Mouokeu C., Goka S.C., Tagnie R.S., Fewou P. Effect of ethanolic extract of Senecio biafrae on puberty onset and fertility in immature female rat. Cameroon J. Exp. Biol. 2010;6:101–109. doi: 10.4314/cajeb.v6i2.68528. DOI

Hassan W., Gendy A., Al-youssef H., El-Shazely A. Chemical constituents and biological activities of Senecio aegyptius var. discoideus Boiss. J. Biosci. C. 2012;67:144–150. doi: 10.1515/znc-2012-3-406. PubMed DOI

Conforti F., Marrelli M., Statti G., Menichini F. Antioxidant and cytotoxic activities of methanolic extract and fractions from Senecio gibbosus subsp. gibbosus (GUSS) DC. Nat. Prod. Res. 2006;20:805–812. doi: 10.1080/14786410500277761. PubMed DOI

Hariprasath L., Raman J., Nanjian R. Gastroprotective effect of Senecio candicans DC on experimental ulcer models. J. Ethnopharmacol. 2012;140:145–150. doi: 10.1016/j.jep.2012.01.002. PubMed DOI

Saeed N., Khan M.R., Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012;12:221. doi: 10.1186/1472-6882-12-221. PubMed DOI PMC

Saada M., Falleh H., Catarino M.D., Cardoso S.M., Ksouri R. Plant growth modulates metabolites and biological activities in Retama raetam (Forssk.) Webb. Molecules. 2018;23:2177. doi: 10.3390/molecules23092177. PubMed DOI PMC

Nakamura M., Ra J.H., Jee Y., Kim J.S. Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J. Food Drug Anal. 2017;25:316–326. doi: 10.1016/j.jfda.2016.08.006. PubMed DOI PMC

Sytar O., Bośko P., Živčák M., Brestic M., Smetanska I. Bioactive phytochemicals and antioxidant properties of the grains and sprouts of colored wheat genotypes. Molecules. 2018;23:2282. doi: 10.3390/molecules23092282. PubMed DOI PMC

Mariod A., Matthaeus B. Fatty acids, tocopherols, sterols, phenolic profiles and oxidative stability of Cucumis melo var. agrestis oil. J. Food Lip. 2008;15:56–67. doi: 10.1111/j.1745-4522.2007.00102.x. DOI

Conforti F., Loizzo M.R., Statti G.A., Houghton P.J., Menichini F. Biological properties of different extracts of two Senecio species. Int. J. Food Sci. Nutr. 2006;57:1–8. doi: 10.1080/09637480500131236. PubMed DOI

Hossain M.B., Rai D.K., Brunton N.P., Martin-Diana A.B., Barry-Ryan C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010;58:10576–10581. doi: 10.1021/jf102042g. PubMed DOI

Wang H., Nair M.G., Strasburg G.M., Booren A.M., Gray J.I. Novel antioxidant compounds from Tart Cherries (Prunus c erasus) J. Nat. Prod. 1999;62:86–88. doi: 10.1021/np980268s. PubMed DOI

McDonald S., Prenzler P.D., Antolovich M., Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001;73:73–84. doi: 10.1016/S0308-8146(00)00288-0. DOI

Hung T.M., Na M., Thuong P.T., Su N.D., Sok D., Song K.S., Seong Y.H., Bae K. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J. Ethnopharmacol. 2006;108:188–192. doi: 10.1016/j.jep.2006.04.029. PubMed DOI

Yang J., Guo J., Yuan J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008;41:1060–1066. doi: 10.1016/j.lwt.2007.06.010. DOI

Razavi S.M., Zahri S., Zarrini G., Nazemiyeh H., Mohammadi S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Russ. J. Bioorg. Chem. 2009;35:376–378. doi: 10.1134/S1068162009030133. PubMed DOI

Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., FangFang X., Modarresi-Ghazani F. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018;97:67–74. doi: 10.1016/j.biopha.2017.10.064. PubMed DOI

Han J., Ye M., Qiao X., Xu M., Wang B.R., Guo D.A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008;47:516–525. doi: 10.1016/j.jpba.2008.02.013. PubMed DOI

Clifford M.N., Johnston K.L., Knight S., Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003;51:2900–2911. doi: 10.1021/jf026187q. PubMed DOI

Yépez A.M., de Ugaz O.L., Alvarez C.M., De Feo V., Aquino R., De Simone F., Pizza C. Quinovic acid glycosides from Uncaria guianensis. Phytochemistry. 1991;30:1635–1637. doi: 10.1016/0031-9422(91)84223-F. PubMed DOI

Jaiswal R., Kuhnert N. Identification and characterization of two new derivatives of chlorogenic acids in Arnica (Arnica montana L.) flowers by high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 2011;59:4033–4039. doi: 10.1021/jf103545k. PubMed DOI

Ibdah M., Zhang X.H., Schmidt J., Vogt T. A novel Mg2+-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J. Biol. Chem. 2003;278:43961–43972. doi: 10.1074/jbc.M304932200. PubMed DOI

Song Y., Desta K.T., Kim G.S., Lee S.J., Lee W.S., Kim Y.H., Jin J.S., Abd El-Aty A.M., Shin H.C., Shim J.H., et al. Polyphenolic profile and antioxidant effects of various parts of Artemisia annua L. Biomed. Chromatogr. 2016;30:588–595. doi: 10.1002/bmc.3587. PubMed DOI

Schieber A., Keller P., Streker P., Klaiber I., Carle R. Detection of isorhamnetin glycosides in extracts of apples (Malus domestica cv.“Brettacher”) by HPLC-PDA and HPLC-APCI-MS/MS. Phytochem. Anal. 2002;13:87–94. doi: 10.1002/pca.630. PubMed DOI

Carazzone C., Mascherpa D., Gazzani G., Papetti A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013;138:1062–1071. doi: 10.1016/j.foodchem.2012.11.060. PubMed DOI

Krzyzanowska-Kowalczyk J., Pecio Ł., Mołdoch J., Ludwiczuk A., Kowalczyk M. Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn metabolite profiles. Molecules. 2018;23:2277. doi: 10.3390/molecules23092277. PubMed DOI PMC

Todaro L., Russo D., Cetera P., Milella L. Effects of thermo-vacuum treatment on secondary metabolite content and antioxidant activity of poplar (Populus nigra L.) wood extracts. Ind. Crops Prod. 2017;109:384–390. doi: 10.1016/j.indcrop.2017.08.052. DOI

Ghorai N., Chakraborty S., Gucchait S., Saha S.K., Biswas S. Estimation of total Terpenoids concentration in plant tissues using a monoterpene, linalool as standard reagent. Protoc. Exch. 2012:5. doi: 10.1038/protex.2012.055. DOI

Armentano M.F., Bisaccia F., Miglionico R., Russo D., Nolfi N., Carmosino M., Andrade P.B., Valentão P., Diop M.S., Milella L. Antioxidant and proapoptotic activities of Sclerocarya birrea [(A. Rich.) Hochst.] methanolic root extract on the hepatocellular carcinoma cell line HepG2. Biomed. Res. Int. 2015;2015 doi: 10.1155/2015/561589. PubMed DOI PMC

Russo D., Valentão P., Andrade P.B., Fernandez E.C., Milella L. Evaluation of antioxidant, antidiabetic and anticholinesterase activities of Smallanthus sonchifolius landraces and correlation with their phytochemical profiles. Int. J. Mol. Sci. 2015;16:17696–17718. doi: 10.3390/ijms160817696. PubMed DOI PMC

Dekdouk N., Malafronte N., Russo D., Faraone I., De Tommasi N., Ameddah S., Severino L., Milella L. Phenolic compounds from Olea europaea L. possess antioxidant activity and inhibit carbohydrate metabolizing enzymes in vitro. Evid. Based Complement. Alternat. Med. 2015;2015 doi: 10.1155/2015/684925. PubMed DOI PMC

Fidelis Q.C., Faraone I., Russo D., Aragão Catunda F.E., Vignola L., de Carvalho M.G., de Tommasi N., Milella L. Chemical and biological insights of Ouratea hexasperma (A. St.-Hil.) Baill.: A source of bioactive compounds with multifunctional properties. Nat. Prod. Res. 2018:1–4. doi: 10.1080/14786419.2017.1419227. PubMed DOI

MikaMi I., YaMaguChi M., Shinmoto H., Tsushida T. Development and validation of a microplate-based β-carotene bleaching assay and comparison of antioxidant activity (AOA) in several crops measured by β-carotene bleaching, DPPH and ORAC assays. Food Sci. Technol. Res. 2009;15:171–178. doi: 10.3136/fstr.15.171. DOI

Rico D., Diana A.B.M., Milton-Laskibar I., Fernández-Quintela A., Silván J.M., Rai D.K., Choudhary A., Peñas E., de Luis D.A., Martínez-Villaluenga C. Characterization and in vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome. J. Funct. Foods. 2018;46:185–194. doi: 10.1016/j.jff.2018.05.010. DOI

Choudhary A., Naughton L.M., Dobson A.D., Rai D.K. HPLC-ESI-MS/MS characterisation of metabolites produced by Pseudovibrio sp. W64, a marine sponge-derived bacterium isolated from Irish waters. Rapid Commun. Mass Spectrom. 2018;32:1737–1745. doi: 10.1002/rcm.8226. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...