Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26263984
PubMed Central
PMC4581216
DOI
10.3390/ijms160817696
PII: ijms160817696
Knihovny.cz E-zdroje
- Klíčová slova
- Smallanthus sonchifolius, anti-cholinesterase activity, anti-diabetic activity, antioxidant activity, phytochemical profile,
- MeSH
- alfa-amylasy antagonisté a inhibitory MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- antioxidancia chemie farmakologie MeSH
- Asteraceae chemie MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- diabetes mellitus farmakoterapie MeSH
- fenoly chemie MeSH
- flavonoidy chemie izolace a purifikace MeSH
- fytonutrienty aplikace a dávkování chemie MeSH
- hypoglykemika chemie farmakologie MeSH
- inhibitory glykosidových hydrolas chemie MeSH
- lidé MeSH
- listy rostlin chemie MeSH
- oxid dusnatý chemie metabolismus MeSH
- peroxidace lipidů účinky léků MeSH
- rostlinné extrakty aplikace a dávkování chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-amylasy MeSH
- antioxidancia MeSH
- cholinesterasové inhibitory MeSH
- fenoly MeSH
- flavonoidy MeSH
- fytonutrienty MeSH
- hypoglykemika MeSH
- inhibitory glykosidových hydrolas MeSH
- oxid dusnatý MeSH
- rostlinné extrakty MeSH
The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer's disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙-) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities.
Zobrazit více v PubMed
Fernández E.C., Viehmannová I., Lachman J., Milella L. Yacon (Smallanthus sonchifolius (Poeppig & Endlicher) H. Robinson): A new crop in the central europe. Plant Soil Environ. 2006;52:564–570.
Milella L., Salava J., Martelli G., Greco I., Cusimani E.F., Viehmannová I. Genetic diversity between yacon landraces from different countries based on random amplified polymorphic DNAs. Czech J. Genet. Plant Breed. 2005;41:73–78.
Ojansivu I., Ferreira C.L., Salminen S. Yacon, a new source of prebiotic oligosaccharides with a history of safe use. Trends Food Sci. Technol. 2011;22:40–46. doi: 10.1016/j.tifs.2010.11.005. DOI
Fernandez E.C., Rajchl A., Lachman J., Cizkova H., Kvasnicka F., Kotikova Z., Milella L., Voldrich M. Impact of yacon landraces cultivated in the czech republic and their ploidy on the short- and long-chain fructooligosaccharides content in tuberous roots. LWT Food Sci. Technol. 2013;54:80–86. doi: 10.1016/j.lwt.2013.05.013. DOI
Aybar M.J., Sanchez Riera A.N., Grau A., Sanchez S.S. Hypoglycemic effect of the water extract of Smallantus sonchifolius (yacon) leaves in normal and diabetic rats. J. Ethnopharmacol. 2001;74:125–132. doi: 10.1016/S0378-8741(00)00351-2. PubMed DOI
Xiang Z., He F., Kang T.G., Dou D.Q., Gai K., Shi Y.Y., Young-Ho K., Dong F. Anti-diabetes constituents in leaves of Smallanthus sonchifolius. Nat. Prod. Commun. 2010;5:95–98. PubMed
Lachman J., Fernández E.C., Orsák M. Yacon (Smallanthus sonchifolia (Poepp. et Endl.) H. Robinson) chemical composition and use—A review. Plant Soil Environ. 2003;49:283–290.
Schorr K., da Costa F.B. Quantitative determination of enhydrin in leaf rinse extracts and in glandular trichomes of Smallanthus sonchifolius (asteraceae) by reversed-phase high-performance liquid chromatography. Phytochem. Anal. 2005;16:161–165. doi: 10.1002/pca.836. PubMed DOI
Lebeda A., Dolezalova I., Valentova K., Dziechciarkova M., Greplova M., Opatova H., Ulrichova J. Biological and chemical variability of maca and yacon. Chem. Listy. 2003;97:548–556.
Valentova K., Cvak L., Muck A., Ulrichova J., Simanek V. Antioxidant activity of extracts from the leaves of Smallanthus sonchifolius. Eur. J. Nutr. 2003;42:61–66. doi: 10.1007/s00394-003-0402-x. PubMed DOI
Valentova K., Sersen F., Ulrichova J. Radical scavenging and anti-lipoperoxidative activities of Smallanthus sonchifolius leaf extracts. J. Agric.Food Chem. 2005;53:5577–5582. doi: 10.1021/jf050403o. PubMed DOI
Simonovska B., Vovk I., Andrensek S., Valentova K., Ulrichova J. Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. J. Chromatogr. A. 2003;1016:89–98. doi: 10.1016/S0021-9673(03)01183-X. PubMed DOI
Lin F.Q., Hasegawa M., Kodama O. Purification and identification of antimicrobial sesquiterpene lactones from yacon (Smallanthus sonchifolius) leaves. Biosci. Biotechnol. Biochem. 2003;67:2154–2159. doi: 10.1271/bbb.67.2154. PubMed DOI
Hostettmann K., Borloz A.U., Marston A. Natural product inhibitors of acetylcholinesterase. Curr. Org. Chem. 2006;10:825–847. doi: 10.2174/138527206776894410. DOI
Mukherjee P.K., Kumar V., Mal M., Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14:289–300. doi: 10.1016/j.phymed.2007.02.002. PubMed DOI
Bakirel T., Bakirel U., Keles O.U., Ulgen S.G., Yardibi H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J. Ethnopharmacol. 2008;116:64–73. doi: 10.1016/j.jep.2007.10.039. PubMed DOI
García-Fontana B., Morales-Santana S., Longobardo V., Reyes-García R., Rozas-Moreno P., García-Salcedo J., Muñoz-Torres M. Relationship between proinflammatory and antioxidant proteins with the severity of cardiovascular disease in type 2 diabetes mellitus. Int. J. Mol. Sci. 2015;16:9469–9483. doi: 10.3390/ijms16059469. PubMed DOI PMC
Luo Q., Cai Y., Yan J., Sun M., Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci. 2004;76:137–149. doi: 10.1016/j.lfs.2004.04.056. PubMed DOI
Gupta R., Gigras P., Mohapatra H., Goswami V.K., Chauhan B. Microbial α-amylases: A biotechnological perspective. Process Biochem. 2003;38:1599–1616. doi: 10.1016/S0032-9592(03)00053-0. DOI
Anam K., Widharna R.M., Kusrini D. α-Glucosidase inhibitor of Terminalia species. Int. J. Pharmacol. 2009;5:277–280. doi: 10.3923/ijp.2009.277.280. DOI
Fred-Jaiyesimi A., Kio A., Richard W. α-Amylase inhibitory effect of 3β-olean-12-en-3-yl (9Z)-hexadec-9-enoate isolated from Spondias mombin leaf. Food Chem. 2009;116:285–288. doi: 10.1016/j.foodchem.2009.02.047. DOI
Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Scherer R., Godoy H.T. Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidant activity. Rev. Bras. Plant. Med. 2014;16:41–46. doi: 10.1590/S1516-05722014000100006. DOI
Naczk M., Pegg R.B., Amarowicz R. Protein-precipitating capacity of bearberry-leaf (Arctostaphylos uva-ursi L. Sprengel) polyphenolics. Food Chem. 2011;124:1507–1513. doi: 10.1016/j.foodchem.2010.08.003. DOI
Hagerman A.E., Butler L.G. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 1978;26:809–812. doi: 10.1021/jf60218a027. DOI
Rajanandh M.G., Kavitha J. Quantitative estimation of β-sitosterol, total phenolic and flavonoid compounds in the leaves of Moringa oleifera. Int. J. PharmTech Res. 2010;2:1409–1414.
Edewor T.I., Akpor O.B., Owa S.O. Quantification of the total phenolic and flavonoid contents, and antibacterial activity of Dioclea reflexa. Int. J. PharmTech Res. 2014;6:1875–1880.
Hagerman A.E. Radial diffusion method for determining tannin in plant extracts. J. Chem. Ecol. 1987;13:437–449. doi: 10.1007/BF01880091. PubMed DOI
Condelli N., Caruso M.C., Galgano F., Russo D., Milella L., Favati F. Prediction of the antioxidant activity of extra virgin olive oils produced in the mediterranean area. Food Chem. 2015;177:233–239. doi: 10.1016/j.foodchem.2015.01.001. PubMed DOI
Jimenez-Escrig A., Jimenez-Jimenez I., Sanchez-Moreno C., Saura-Calixto F. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J. Sci. Food Agric. 2000;80:1686–1690. doi: 10.1002/1097-0010(20000901)80:11<1686::AID-JSFA694>3.0.CO;2-Y. DOI
Brune B. Nitric oxide: No apoptosis or turning it on? Cell Death Differ. 2003;10:864–869. doi: 10.1038/sj.cdd.4401261. PubMed DOI
Marcocci L., Maguire J.J., Droy-Lefaix M.T., Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun. 1994;201:748–755. doi: 10.1006/bbrc.1994.1764. PubMed DOI
Ferreres F., Gil-Izquierdo A., Vinholes J., Silva S.T., Valentão P., Andrade P.B. Bauhinia forficata link authenticity using flavonoids profile: Relation with their biological properties. Food Chem. 2012;134:894–904. doi: 10.1016/j.foodchem.2012.02.201. PubMed DOI
Kussmaul L., Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA. 2006;103:7607–7612. doi: 10.1073/pnas.0510977103. PubMed DOI PMC
De Zwart L.L., Meerman J.H., Commandeur J.N., Vermeulen N.P. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic. Biol. Med. 1999;26:202–226. doi: 10.1016/S0891-5849(98)00196-8. PubMed DOI
Gutteridge J.M., Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 1990;15:129–135. doi: 10.1016/0968-0004(90)90206-Q. PubMed DOI
Halliwell B., Chirico S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993;57:715S–724S. PubMed
Corongiu F.P., Banni S. Detection of conjugated dienes by second derivative ultraviolet spectrophotometry. Methods Enzymol. 1994;233:303–310. PubMed
Suba V., Murugesan T., Arunachalam G., Mandal S.C., Saha B.P. Antidiabetic potential of Barleria lupulina extract in rats. Phytomedicine. 2004;11:202–205. doi: 10.1078/0944-7113-00316. PubMed DOI
Ahmad S., Ullah F., Ayaz M., Sadiq A., Imran M. Antioxidant and anticholinesterase investigations of Rumex hastatus d. Don: Potential effectiveness in oxidative stress and neurological disorders. Biol. Res. 2015;48:20. doi: 10.1186/s40659-015-0010-2. PubMed DOI PMC
Ellman G.L., Courtney K.D., Andres V., Jr., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Genta S.B., Cabrera W.M., Mercado M.I., Grau A., Catalan C.A., Sanchez S.S. Hypoglycemic activity of leaf organic extracts from Smallanthus sonchifolius: Constituents of the most active fractions. Chem. Biol. Interact. 2010;185:143–152. doi: 10.1016/j.cbi.2010.03.004. PubMed DOI
Yang H.Y., Du G., Cheng X.M., Yang X.X., Liu M.H., Dai Y. Determination of rutin and quercetin in extraction of leaves of yacon with ethanol by using HPLC. Food Res. Dev. 2008;9:119–121.
Oliveira R.B., Chagas-Paula D.A., Secatto A., Gasparoto T.H., Faccioli L.H., Campanelli A.P., da Costa F.B. Topical anti-infl ammatory activity of yacon leaf extracts. Res. Bras. Pharmacogn. 2013;23:497–505. doi: 10.1590/S0102-695X2013005000032. DOI
Russo D., Malafronte N., Frescura D., Imbrenda G., Faraone I., Milella L., Fernandez E., de Tommasi N. Antioxidant activities and qualiquantitative analysis of different Smallanthus sonchifolius ((Poepp. and Endl.) H. Robinson) landrace extracts. Nat. Prod. Res. 2014;23:1–5. PubMed
Valentão P., Fernandes E., Carvalho F., Andrade P.B., Seabra R.M., Bastos M.L. Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J. Agric. Food Chem. 2002;50:4989–4993. doi: 10.1021/jf020225o. PubMed DOI
Yan X., Suzuki M., Ohnishi-Kameyama M., Sada Y., Nakanishi T., Nagata T. Extraction and identification of antioxidants in the roots of yacon (Smallanthus sonchifolius) J. Agric. Food Chem. 1999;47:4711–4713. doi: 10.1021/jf981305o. PubMed DOI
Sun T., Tanumihardjo S.A. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 2007;72:159–165. doi: 10.1111/j.1750-3841.2007.00552.x. PubMed DOI
Fernandes F., Ramalhosa E., Pires P., Verdial J., Valentão P., Andrade P.A., Bento A., Pereira J.A. Vitis vinifera leaves towards bioactivity. Ind. Crop. Prod. 2013;43:434–440. doi: 10.1016/j.indcrop.2012.07.031. DOI
Lim Y.J., Oh C.S., Park Y.D., Eom S.H., Kim D.O., Kim U.J., Cho Y.S. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 2014;23:943–949. doi: 10.1007/s10068-014-0127-z. DOI
Panceri C.P., Gomes T.M., de Gois J.S., Borges D.L.G., Bordignon-Luiz M.T. Effect of dehydration process on mineral content, phenolic compounds and antioxidant activity of cabernet sauvignon and merlot grapes. Food Res. Int. 2013;54:1343–1350. doi: 10.1016/j.foodres.2013.10.016. DOI
Oszmiański J., Nowicka P., Teleszko M., Wojdyło A., Cebulak T., Oklejewicz K. Analysis of phenolic compounds and antioxidant activity in wild blackberry fruits. Int. J. Mol. Sci. 2015;16:14540–14553. doi: 10.3390/ijms160714540. PubMed DOI PMC
Svobodova E., Dvorakova Z., Cepkova P.H., Viehmannova I., Havlickova L., Cusimamani E.F., Russo D., Zela G.M. Genetic diversity of yacon (Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson) and its wild relatives as revealed by ISSR markers. Biochem. Syst. Ecol. 2013;50:383–389.
Milella L., Martelli G., Salava J., Fernandez E., Ovesna J., Greco I. Total phenolic content, RAPDs, AFLPs and morphological traits for the analysis of variability in Smallanthus sonchifolius. Genet. Resour. Crop Evol. 2011;58:545–551. doi: 10.1007/s10722-010-9597-x. DOI
Milella L., Caruso M., Galgano F., Favati F., Padula M.C., Martelli G. Role of the cultivar in choosing clementine fruits with a high level of health-promoting compounds. J. Agric. Food Chem. 2011;59:5293–5298. doi: 10.1021/jf104991z. PubMed DOI
Lobo R., Sodde V., Dashora N., Gupta N., Prabhu K. Quantification of flavonoid and phenol content from Macrosolen parasiticus (L.) Danser. J. Nat. Prod. Plant Resour. 2011;11:96–99.
Russo D., Bonomo M.G., Salzano G., Martelli G., Milella L. Nutraceutical properties of Citrus clementina juices. Pharmacologyonline. 2012;1:84–93.
Milella L., Bader A., de Tommasi N., Russo D., Braca A. Antioxidant and free radical-scavenging activity of constituents from two scorzonera species. Food Chem. 2014;160:298–304. doi: 10.1016/j.foodchem.2014.03.097. PubMed DOI
Ferreres F., Lopes G., Gil-Izquierdo A., Andrade P.B., Sousa C., Mouga T., Valentão P. Phlorotannin extracts from fucales characterised by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar. Drugs. 2012;10:2766–2781. doi: 10.3390/md10122766. PubMed DOI PMC
Ranilla L.G., Kwon Y.I., Apostolidis E., Shetty K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010;101:4676–4689. doi: 10.1016/j.biortech.2010.01.093. PubMed DOI
Vinholes J., Grosso C., Andrade P.B., Gil-Izquierdo A., Valentão P., de Pinho P.G., Ferreres F. In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidante potential of Spergularia rubra. Food Chem. 2011;129:454–462. doi: 10.1016/j.foodchem.2011.04.098. PubMed DOI
Takenaka M., Yan X., Ono H., Yoshida M., Nagata T., Nakanishi T. Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius) J. Agric. Food Chem. 2003;51:793–796. doi: 10.1021/jf020735i. PubMed DOI
Seabra R.M., Andrade P.B., Valentão P., Fernandes E., Carvalho F., Bastos M.L. Antioxidant compounds extracted from several plant materials. In: Fingerman M., Nagabhushanam R., editors. Biomaterials from Aquatic and Terrestrial Organisms. Science Publishers; Enfield, NH, USA: 2006. pp. 115–174.
Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd