Feasibility of Location-Aware Handover for Autonomous Vehicles in Industrial Multi-Radio Environments
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
313039, 328226, 328214
Academy of Finland
CZ.02.2.69/0.0/0.0/16_027/00083710
European Union
5G VIIMA
Finnish Funding Agency for Innovation
PubMed
33167301
PubMed Central
PMC7663812
DOI
10.3390/s20216290
PII: s20216290
Knihovny.cz E-zdroje
- Klíčová slova
- dead reckoning, geometry-based positioning, indoor industrial environments, location-aware handover, mmWave communications, multi-radio access, radio positioning,
- Publikační typ
- časopisecké články MeSH
The integration of millimeter wave (mmWave) and low frequency interfaces brings an unique opportunity to unify the communications and positioning technologies in the future wireless heterogeneous networks (HetNets), which offer great potential for efficient handover using location awareness, hence a location-aware handover (LHO). Targeting a self-organized communication system with autonomous vehicles, we conduct and describe an experimental and analytical study on the LHO using a mmWave-enabled robotic platform in a multi-radio environment. Compared to the conventional received signal strength indicator (RSSI)-based handover, the studied LHO not only improves the achievable throughput, but also enhances the wireless link robustness for the industrial Internet-of-things (IIoT)-oriented applications. In terms of acquiring location awareness, a geometry-based positioning (GBP) algorithm is proposed and implemented in both simulation and experiments, where its achievable accuracy is assessed and tested. Based on the performed experiments, the location-related measurements acquired by the robot are not accurate enough for the standalone-GBP algorithm to provide an accurate location awareness to perform a reliable handover. Nevertheless, we demonstrate that by combining the GBP with the dead reckoning, more accurate location awareness becomes achievable, the LHO can therefore be performed in a more optimized manner compared to the conventional RSSI-based handover scheme, and is therefore able to achieve approximately twice as high average throughput in certain scenarios. Our study confirms that the achieved location awareness, if accurate enough, could enable an efficient handover scheme, further enhancing the autonomous features in the HetNets.
Department of Electrial Engineering Tampere University 33720 Tampere Finland
Department of Telecommunications Brno University of Technology 616 00 Brno Czech Republic
Zobrazit více v PubMed
ITU-R M.1645. Framework and Overall Objectives of the Future Development of IMT-2000 and System Beyond IMT-2000. [(accessed on 1 September 2015)];2015 Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M2083-0-201509-I!!PDF-E.pdf.
3GPP, TR 36.819 V11.2.0. Coordinated Multi-Point Operation for LTE Physical Layer Aspects (Release 11) [(accessed on 1 September 2013)];2013 Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2498.
3GPP, TR 36.842 V12.0.0. Study on Small Cell Enhancements for E-UTRA and E-UTRAN; Higher Layer aspects (Release 12) [(accessed on 1 January 2014)];2014 Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2543.
3GPP, TR 37.340 V15.5.0. NR; Multi-Connecitivty; Overall Description; Stage 2 (Release 15) [(accessed on 1 October 2020)];2019 Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3198.
Giordani M., Mezzavilla M., Rangan S., Zorzi M. Multi-connectivity in 5G mmWave cellular networks; Proceedings of the 2016 Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net); Vilanova i la Geltru, Spain. 20–22 June 2016; pp. 1–7. DOI
Bi T., Muntean G. Location-aware network selection mechanism in heterogeneous wireless networks; Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS); Atlanta, GA, USA. 1–4 May 2017; pp. 583–588. DOI
Xu K., Wang K., Amin R., Martin J., Izard R. A Fast Cloud-Based Network Selection Scheme Using Coalition Formation Games in Vehicular Networks. IEEE Trans. Veh. Technol. 2015;64:5327–5339. doi: 10.1109/TVT.2014.2379953. DOI
Liu C., Xia W., Chen G., Shen L. Location-aware handover decision algorithm in multi-cell networks; Proceedings of the 2013 International Conference on Wireless Communications and Signal Processing; Hangzhou, China. 24–26 October 2013; pp. 1–6. DOI
Kuboniwa J., Miyake Y., Kameda S., Taira A., Oguma H., Suematsu N., Takagi T., Tsubouchi K. High efficient network selection scheme using location information for heterogeneous wireless system; Proceedings of the 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW); New Orleans, LA, USA. 9–12 March 2015; pp. 391–396. DOI
Kang B., Park C., Choo H. A Location Aware Fast PMIPv6 for Low Latency Wireless Sensor Networks. IEEE Sens. J. 2019;19:9456–9467. doi: 10.1109/JSEN.2019.2925637. DOI
Hsieh P., Lin W., Lin K., Wei H. Dual-Connectivity Prevenient Handover Scheme in Control/User-Plane Split Networks. IEEE Trans. Veh. Technol. 2018;67:3545–3560. doi: 10.1109/TVT.2017.2778065. DOI
Zhang Z., Zhao J., Ni S., Gong Y. A Seamless Handover Scheme With Assisted eNB for 5G C/U Plane Split Heterogeneous Network. IEEE Access. 2019;7:164256–164264. doi: 10.1109/ACCESS.2019.2952737. DOI
Zang S., Bao W., Yeoh P.L., Vucetic B., Li Y. Managing Vertical Handovers in Millimeter Wave Heterogeneous Networks. IEEE Trans. Commun. 2019;67:1629–1644. doi: 10.1109/TCOMM.2018.2877326. DOI
Yan L., Ding H., Zhang L., Liu J., Fang X., Fang Y., Xiao M., Huang X. Machine Learning-Based Handovers for Sub-6 GHz and mmWave Integrated Vehicular Networks. IEEE Trans. Wirel. Commun. 2019;18:4873–4885. doi: 10.1109/TWC.2019.2930193. DOI
Fiandrino C., Assasa H., Casari P., Widmer J. Scaling Millimeter-Wave Networks to Dense Deployments and Dynamic Environments. Proc. IEEE. 2019;107:732–745. doi: 10.1109/JPROC.2019.2897155. DOI
Chen J., Wang Y., Li Y., Wang E. QoE-Aware Intelligent Vertical Handoff Scheme Over Heterogeneous Wireless Access Networks. IEEE Access. 2018;6:38285–38293. doi: 10.1109/ACCESS.2018.2853730. DOI
Suarez-Rodriguez C., He Y., Dutkiewicz E. Theoretical Analysis of REM-Based Handover Algorithm for Heterogeneous Networks. IEEE Access. 2019;7:96719–96731. doi: 10.1109/ACCESS.2019.2929525. DOI
Lembo S., Horsmanheimo S., Laukkanen M. Positioning Based Intra-Frequency Handover in Indoor Cellular Network for Ultra Reliable Communications Assisted by Radio Maps; Proceedings of the 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); Dublin, Ireland. 28–30 October 2019; pp. 1–9.
Erisson . Cellular IoT Evolution for Industry Digitalization. Erisson; Stockholm, Sweden: 2019. White Paper.
Abari O., Bharadia D., Duffield A., Katabi D. Cutting the cord in virtual reality; Proceedings of the 15th ACM Workshop on Hot Topics in Networks; Atlanta, GA, USA. 9 November 2016; New York, NY, USA: ACM; 2016. pp. 162–168. DOI
Ahmed A., Boulahia L.M., Gaïti D. Enabling Vertical Handover Decisions in Heterogeneous Wireless Networks: A State-of-the-Art and A Classification. IEEE Commun. Surv. Tutor. 2014;16:776–811. doi: 10.1109/SURV.2013.082713.00141. DOI
Tayyab M., Gelabert X., Jäntti R. A Survey on Handover Management: From LTE to NR. IEEE Access. 2019;7:118907–118930. doi: 10.1109/ACCESS.2019.2937405. DOI
Khan M., Han X. A Survey of Context Aware Vertical Handover Management Schemes in Heterogeneous Wireless Networks. Wirel. Pers. Commun. 2015;85:2273–2293. doi: 10.1007/s11277-015-2904-2. DOI
Prasad R.V., Niemieeger I., Nguyen T.V.H. A study on handoff issues in radio over fiber network at 60 GHz; Proceedings of the International Conference on Communications and Electronics 2010; Nha Trang, Vietnam. 11–13 August 2010; pp. 50–54.
Al-Ammar M.A., Alhadhrami S., Al-Salman A., Alarifi A., Al-Khalifa H., Alnafessah A., Alsaleh M. Comparative Survey of Indoor Positioning Technologies, Techniques, and Algorithms; Proceedings of the 2014 International Conference on Cyberworlds (CW); Santander, Spain. 6–8 October 2014; pp. 245–252. DOI
Brena R.F., García-Vázquez J.P., Galván-Tejada C.E., Muñoz-Rodriguez D., Vargas-Rosales C., Fangmeyer J. Evolution of indoor positioning technologies: A survey. J. Sens. 2017;2017 doi: 10.1155/2017/2630413. DOI
Zekavat R., Buehrer R.M. Handbook of Position Location: Theory, Practice and Advances. 2nd ed. Wiley-IEEE Press; New York, NY, USA: 2019.
Kang W., Han Y. SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization. IEEE Sens. J. 2015;15:2906–2916. doi: 10.1109/JSEN.2014.2382568. DOI
3GPP, TR 22.872 V16.0.0. Study on Positioning Use Cases (Release 16) [(accessed on 1 September 2018)];2018 Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3280.
Lu Y., Richter P., Lohan E.S. Opportunities and Challenges in the Industrial Internet of Things based on 5G Positioning; Proceedings of the 2018 8th International Conference on Localization and GNSS (ICL-GNSS); Guimaraes, Portugal. 26–28 June 2018; pp. 1–6. DOI
Koivisto M., Talvitie J., Costa M., Leppänen K., Valkama M. Joint cmWave-based multiuser positioning and network synchronization in dense 5G networks; Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC); Barcelona, Spain. 15–18 April 2018; pp. 1–6. DOI
Etzlinger B., Wymeersch H., Springer A. Cooperative Synchronization in Wireless Networks. IEEE Trans. Signal Process. 2014;62:2837–2849. doi: 10.1109/TSP.2014.2313531. DOI
Sand S., Dammann A., Mensing C. Positioning in Wireless Communication Systems. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2014.
Talvitie J., Levanen T., Koivisto M., Pajukoski K., Renfors M., Valkama M. Positioning of high-speed trains using 5G new radio synchronization signals; Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC); Barcelona, Spain. 15–18 April 2018; pp. 1–6. DOI
Lu Y., Koivisto M., Talvitie J., Valkama M., Lohan E.S. EKF-based and Geometry-based Positioning under Location Uncertainty of Access Nodes in Indoor Environment; Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN); Pisa, Italy. 30 September–3 October 2019; pp. 1–7. DOI
3GPP, TR 23.714 V14.0.0. Study on Control and User Plane Separation of EPC Nodes (Release 14) [(accessed on 1 June 2016)];2016 Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2963.
Zhao F., Tian H., Nie G., Wu H. Received Signal Strength Prediction Based Multi-Connectivity Handover Scheme for Ultra-Dense Networks; Proceedings of the 2018 24th Asia-Pacific Conference on Communications (APCC); Ningbo, China. 12–14 November 2018; pp. 233–238.
3GPP, TR 28.801 V15.0.0. Study on Management and Orchestration of Network Slicing for Next Generation Network (Release 15) [(accessed on 1 January 2018)];2018 Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091.
Dahlman E., Parkvall S., Skold J. 5G NR: The Next Generation Wireless Access Technology. Elsevier Science; Amsterdam, The Netherlands: 2018.
Dong X., Zhao L., Zhao H., Pan C. RAN Slicing-based Handover Scheme in HetNetss; Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP); Shanghai, China. 19–21 November 2018; pp. 1–5.
Feirer S., Sauter T. Seamless handover in industrial WLAN using IEEE 802.11k; Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE); Edinburgh, UK. 19–21 June 2017; pp. 1234–1239.
Li Y., Li C., Chen W., Yeh C., Wang K. Enabling seamless WiGig/WiFi handovers in tri-band wireless systems; Proceedings of the 2017 IEEE 25th International Conference on Network Protocols (ICNP); Toronto, ON, Canada. 10–13 October 2017; pp. 1–2.
Ma J., Yang D., Zhang H., Gidlund M. A Reliable Handoff Mechniasm for Mobile Industrial Wireless Sensor Networks. Sensors. 2017;17:1797. doi: 10.3390/s17081797. PubMed DOI PMC
3GPP, TS 23.402 V16.0.0. Architecture Enhancements for Non-3GPP Accesses (Release 16) [(accessed on 1 June 2019)];2019 Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=850.
Sammour I., Chalhoub G. Evaluation of Rate Adaptation Algorithms in IEEE 802.11 Networks. Electronics. 2020;9:1436. doi: 10.3390/electronics9091436. DOI
Khan M.W., Salman N., Kemp A.H., Mihaylova L. Localisation of Sensor Nodes with Hybrid Measurements in Wireless Sensor Networks. Sensors. 2016;16:1143. doi: 10.3390/s16071143. PubMed DOI PMC
Orsino A., Kovalchukov R., Samuylov A., Moltchanov D., Andreev S., Koucheryavy Y., Valkama M. Caching-aided collaborative D2D operation for predictive data dissemination in industrial IoT. IEEE Wirel. Commun. 2018;25:50–57. doi: 10.1109/MWC.2018.1700320. DOI
Rastorgueva-Foi E., Koivisto M., Valkama M., Costa M., Leppänen K. Localization and Tracking in mmWave Radio Networks using Beam-Based DoD Measurements; Proceedings of the 2018 8th International Conference on Localization and GNSS (ICL-GNSS); Guimaraes, Portugal. 26–28 June 2018; pp. 1–6. DOI
Lu Y., Koivisto M., Talvitie J., Valkama M., Lohan E.S. Positioning-Aided 3D Beamforming for Enhanced Communications in mmWave Mobile Networks. IEEE Access. 2020;8:55513–55525. doi: 10.1109/ACCESS.2020.2981815. DOI
Hormann K., Agathos A. The point in polygon problem for arbitrary polygons. Comput. Geom. 2001;20:131–144. doi: 10.1016/S0925-7721(01)00012-8. DOI
Zhou A., Wu L., Xu S., Ma H., Wei T., Zhang X. Following the Shadow: Agile 3-D Beam-Steering for 60 GHz Wireless Networks; Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications; Honolulu, HI, USA. 16–19 April 2018; pp. 2375–2383. DOI
3GPP, TR 38.900 V15.0.0. Study on Channel Model for Frequency Spectrum above 6 GHz (Release 15) [(accessed on 1 June 2018)];2018 Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2991.