Druggable Hot Spots in the Schistosomiasis Cathepsin B1 Target Identified by Functional and Binding Mode Analysis of Potent Vinyl Sulfone Inhibitors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R21 AI126296
NIAID NIH HHS - United States
PubMed
33175511
PubMed Central
PMC8154419
DOI
10.1021/acsinfecdis.0c00501
Knihovny.cz E-zdroje
- Klíčová slova
- Schistosoma mansoni, cathepsin B, cysteine peptidase, drug target, parasite, vinyl sulfone inhibitor,
- MeSH
- kathepsin B * MeSH
- lidé MeSH
- Schistosoma mansoni MeSH
- schistosomóza * farmakoterapie MeSH
- sulfony farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- divinyl sulfone MeSH Prohlížeč
- kathepsin B * MeSH
- sulfony MeSH
Schistosomiasis, a parasitic disease caused by blood flukes of the genus Schistosoma, is a global health problem with over 200 million people infected. Treatment relies on just one drug, and new chemotherapies are needed. Schistosoma mansoni cathepsin B1 (SmCB1) is a critical peptidase for the digestion of host blood proteins and a validated drug target. We screened a library of peptidomimetic vinyl sulfones against SmCB1 and identified the most potent SmCB1 inhibitors reported to date that are active in the subnanomolar range with second order rate constants (k2nd) of ∼2 × 105 M-1 s-1. High resolution crystal structures of the two best inhibitors in complex with SmCB1 were determined. Quantum chemical calculations of their respective binding modes identified critical hot spot interactions in the S1' and S2 subsites. The most potent inhibitor targets the S1' subsite with an N-hydroxysulfonic amide moiety and displays favorable functional properties, including bioactivity against the pathogen, selectivity for SmCB1 over human cathepsin B, and reasonable metabolic stability. Our results provide structural insights for the rational design of next-generation SmCB1 inhibitors as potential drugs to treat schistosomiasis.
Eastern Michigan University 541 Mark Jefferson Ypsilanti Michigan 48197 United States
The Scripps Research Institute 130 Scripps Way Jupiter Florida 33458 United States
University of California San Francisco 600 16th Street San Francisco California 94143 United States
Zobrazit více v PubMed
Colley D. G.; Bustinduy A. L.; Secor W. E.; King C. H. (2014) Human schistosomiasis. Lancet 383 (9936), 2253–2264. 10.1016/S0140-6736(13)61949-2. PubMed DOI PMC
Burke M. L.; Jones M. K.; Gobert G. N.; Li Y. S.; Ellis M. K.; McManus D. P. (2009) Immunopathogenesis of human schistosomiasis. Parasite Immunol. 31 (4), 163–176. 10.1111/j.1365-3024.2009.01098.x. PubMed DOI
Caffrey C. R. (2007) Chemotherapy of schistosomiasis: present and future. Curr. Opin. Chem. Biol. 11 (4), 433–439. 10.1016/j.cbpa.2007.05.031. PubMed DOI
Caffrey C. R.; Secor W. E. (2011) Schistosomiasis: from drug deployment to drug development. Curr. Opin. Infect. Dis. 24 (5), 410–417. 10.1097/QCO.0b013e328349156f. PubMed DOI
Thetiot-Laurent S. A.; Boissier J.; Robert A.; Meunier B. (2013) Schistosomiasis chemotherapy. Angew. Chem., Int. Ed. 52 (31), 7936–7956. 10.1002/anie.201208390. PubMed DOI
Delcroix M.; Sajid M.; Caffrey C. R.; Lim K. C.; Dvořák J.; Hsieh I.; Bahgat M.; Dissous C.; McKerrow J. H. (2006) A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 281 (51), 39316–39329. 10.1074/jbc.M607128200. PubMed DOI
Caffrey C. R.; Goupil L.; Rebello K. M.; Dalton J. P.; Smith D. (2018) Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Neglected Trop. Dis. 12 (8), e0005840.10.1371/journal.pntd.0005840. PubMed DOI PMC
Caffrey C. R.; Ruppel A. (1997) Cathepsin B-like activity predominates over cathepsin L-like activity in adult Schistosoma mansoni and S. japonicum. Parasitol. Res. 83 (6), 632–635. 10.1007/s004360050310. PubMed DOI
Sajid M.; McKerrow J. H.; Hansell E.; Mathieu M. A.; Lucas K. D.; Hsieh I.; Greenbaum D.; Bogyo M.; Salter J. P.; Lim K. C.; Franklin C.; Kim J. H.; Caffrey C. R. (2003) Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol. 131 (1), 65–75. 10.1016/S0166-6851(03)00194-4. PubMed DOI
Jílková A.; Řezáčová P.; Lepšík M.; Horn M.; Váchová J.; Fanfrlík J.; Brynda J.; McKerrow J. H.; Caffrey C. R.; Mareš M. (2011) Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem. 286 (41), 35770–35781. 10.1074/jbc.M111.271304. PubMed DOI PMC
Musil D.; Zucic D.; Turk D.; Engh R. A.; Mayr I.; Huber R.; Popovic T.; Turk V.; Towatari T.; Katunuma N. (1991) The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10 (9), 2321–2330. 10.1002/j.1460-2075.1991.tb07771.x. PubMed DOI PMC
Jílková A.; Horn M.; Řezáčová P.; Marešová L.; Fajtová P.; Brynda J.; Vondrášek J.; McKerrow J. H.; Caffrey C. R.; Mareš M. (2014) Activation Route of the Schistosoma mansoni Cathepsin B1 Drug Target: Structural Map with a Glycosaminoglycan Switch. Structure 22 (12), 1786–1798. 10.1016/j.str.2014.09.015. PubMed DOI
Abdulla M. H.; Lim K. C.; Sajid M.; McKerrow J. H.; Caffrey C. R. (2007) Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS. Med. 4 (1), e14.10.1371/journal.pmed.0040014. PubMed DOI PMC
Palmer J. T.; Rasnick D.; Klaus J. L.; Brömme D. (1995) Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 38 (17), 3193–3196. 10.1021/jm00017a002. PubMed DOI
Brömme D.; Klaus J. L.; Okamoto K.; Rasnick D.; Palmer J. T. (1996) Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L. Biochem. J. 315 (1), 85–89. 10.1042/bj3150085. PubMed DOI PMC
Marco M.; Coteron J. M. (2012) Falcipain inhibition as a promising antimalarial target. Curr. Top. Med. Chem. 12 (5), 408–444. 10.2174/156802612799362913. PubMed DOI
Steverding D.; Caffrey C. R.; Sajid M. (2006) Cysteine proteinase inhibitors as therapy for parasitic diseases: advances in inhibitor design. Mini-Rev. Med. Chem. 6 (9), 1025–1032. 10.2174/138955706778195207. PubMed DOI
Engel J. C.; Doyle P. S.; Hsieh I.; McKerrow J. H. (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J. Exp. Med. 188 (4), 725–734. 10.1084/jem.188.4.725. PubMed DOI PMC
Vermeire J. J.; Lantz L. D.; Caffrey C. R. (2012) Cure of hookworm infection with a cysteine protease inhibitor. PLoS Neglected Trop. Dis. 6 (7), e1680.10.1371/journal.pntd.0001680. PubMed DOI PMC
Shenai B. R.; Lee B. J.; Alvarez-Hernandez A.; Chong P. Y.; Emal C. D.; Neitz R. J.; Roush W. R.; Rosenthal P. J. (2003) Structure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob. Agents Chemother. 47 (1), 154–60. 10.1128/AAC.47.1.154-160.2003. PubMed DOI PMC
Powers J. C.; Asgian J. L.; Ekici O. D.; James K. E. (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102 (12), 4639–750. 10.1021/cr010182v. PubMed DOI
Sajid M.; Robertson S. A.; Brinen L. S.; McKerrow J. H. (2011) Cruzain: the path from target validation to the clinic. Adv. Exp. Med. Biol. 712, 100–15. 10.1007/978-1-4419-8414-2_7. PubMed DOI
McKerrow J. H. (2018) Update on drug development targeting parasite cysteine proteases. PLoS Neglected Trop. Dis. 12 (8), e0005850.10.1371/journal.pntd.0005850. PubMed DOI PMC
Betts M. J.; Sternberg M. J. (1999) An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng., Des. Sel. 12 (4), 271–83. 10.1093/protein/12.4.271. PubMed DOI
Long T.; Neitz R. J.; Beasley R.; Kalyanaraman C.; Suzuki B. M.; Jacobson M. P.; Dissous C.; McKerrow J. H.; Drewry D. H.; Zuercher W. J.; Singh R.; Caffrey C. R. (2016) Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni. PLoS Neglected Trop. Dis. 10 (1), e0004356.10.1371/journal.pntd.0004356. PubMed DOI PMC
Glaser J.; Schurigt U.; Suzuki B. M.; Caffrey C. R.; Holzgrabe U. (2015) Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl and Thymyl Cinnamate Induce Cytoplasmic Vacuoles and Death in Schistosomula of Schistosoma mansoni. Molecules 20 (6), 10873–10883. 10.3390/molecules200610873. PubMed DOI PMC
Wendt G.; Zhao L.; Chen R.; Liu C.; O’Donoghue A. J.; Caffrey C. R.; Reese M. L.; Collins J. J. 3rd. (2020) A single-cell RNA-seq atlas of Schistosoma mansoni identifies a key regulator of blood feeding. Science 369 (6511), 1644–1649. PubMed PMC
Correnti J. M.; Brindley P. J.; Pearce E. J. (2005) Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol. Biochem. Parasitol. 143 (2), 209–15. 10.1016/j.molbiopara.2005.06.007. PubMed DOI
Fonseca N. C.; da Cruz L. F.; da Silva Villela F.; do Nascimento Pereira G. A.; de Siqueira-Neto J. L.; Kellar D.; Suzuki B. M.; Ray D.; de Souza T. B.; Alves R. J.; Sales Junior P. A.; Romanha A. J.; Murta S. M.; McKerrow J. H.; Caffrey C. R.; de Oliveira R. B.; Ferreira R. S. (2015) Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother. 59 (5), 2666–2677. 10.1128/AAC.04601-14. PubMed DOI PMC
Lopes M. S.; Suzuki B. M.; Pereira G. A. d. N.; Probst A. C.; Ferreira R. S.; Oliveira J. T. d.; Tecchio K. B.; Santos F. V. d.; Caffrey C. R.; Oliveira R. B. d. (2018) Ortho-nitrobenzyl derivatives as potential anti-schistosomal agents. Brazilian Journal of Pharmaceutical Sciences 54, 1.10.1590/s2175-97902018000217376. DOI
Choe Y.; Leonetti F.; Greenbaum D. C.; Lecaille F.; Bogyo M.; Brömme D.; Ellman J. A.; Craik C. S. (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281 (18), 12824–12832. 10.1074/jbc.M513331200. PubMed DOI
Turk V.; Stoka V.; Vasiljeva O.; Renko M.; Sun T.; Turk B.; Turk D. (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta, Proteins Proteomics 1824 (1), 68–88. 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC
Kerr I. D.; Lee J. H.; Farady C. J.; Marion R.; Rickert M.; Sajid M.; Pandey K. C.; Caffrey C. R.; Legac J.; Hansell E.; McKerrow J. H.; Craik C. S.; Rosenthal P. J.; Brinen L. S. (2009) Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J. Biol. Chem. 284 (38), 25697–25703. 10.1074/jbc.M109.014340. PubMed DOI PMC
Brinen L. S.; Hansell E.; Cheng J.; Roush W. R.; McKerrow J. H.; Fletterick R. J. (2000) A target within the target: probing cruzain’s P1’ site to define structural determinants for the Chagas’ disease protease. Structure 8 (8), 831–840. 10.1016/S0969-2126(00)00173-8. PubMed DOI
Abdulla M. H.; Ruelas D. S.; Wolff B.; Snedecor J.; Lim K. C.; Xu F.; Renslo A. R.; Williams J.; McKerrow J. H.; Caffrey C. R. (2009) Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Neglected Trop. Dis. 3 (7), e478.10.1371/journal.pntd.0000478. PubMed DOI PMC
Caffrey C. R.; Hansell E.; Lucas K. D.; Brinen L. S.; Alvarez H. A.; Cheng J.; Gwaltney S. L.; Roush W. R.; Stierhof Y. D.; Bogyo M.; Steverding D.; McKerrow J. H. (2001) Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol. 118 (1), 61–73. 10.1016/S0166-6851(01)00368-1. PubMed DOI
Roush W. R.; Gwaltney S. L.; Cheng J.; Scheidt K. A.; McKerrow J. H.; Hansell E. (1998) Vinyl Sulfonate Esters and Vinyl Sulfonamides: Potent, Irreversible Inhibitors of Cysteine Proteases. J. Am. Chem. Soc. 120 (42), 10994–10995. 10.1021/ja981792o. DOI
Roush W. R.; Cheng J.; Knapp-Reed B.; Alvarez-Hernandez A.; McKerrow J. H.; Hansell E.; Engel J. C. (2001) Potent second generation vinyl sulfonamide inhibitors of the trypanosomal cysteine protease cruzain. Bioorg. Med. Chem. Lett. 11 (20), 2759–2762. 10.1016/S0960-894X(01)00566-2. PubMed DOI
Ang K. K.; Ratnam J.; Gut J.; Legac J.; Hansell E.; Mackey Z. B.; Skrzypczynska K. M.; Debnath A.; Engel J. C.; Rosenthal P. J.; McKerrow J. H.; Arkin M. R.; Renslo A. R. (2011) Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Neglected Trop. Dis. 5 (5), e1023.10.1371/journal.pntd.0001023. PubMed DOI PMC
Reddick J. J.; Cheng J.; Roush W. R. (2003) Relative rates of Michael reactions of 2’-(phenethyl)thiol with vinyl sulfones, vinyl sulfonate esters, and vinyl sulfonamides relevant to vinyl sulfonyl cysteine protease inhibitors. Org. Lett. 5 (11), 1967–70. 10.1021/ol034555l. PubMed DOI
Somoza J. R.; Zhan H.; Bowman K. K.; Yu L.; Mortara K. D.; Palmer J. T.; Clark J. M.; McGrath M. E. (2000) Crystal structure of human cathepsin V. Biochemistry 39 (41), 12543–12551. 10.1021/bi000951p. PubMed DOI
Baell J. B.; Holloway G. A. (2010) New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 53 (7), 2719–2740. 10.1021/jm901137j. PubMed DOI
Horn M.; Jílková A.; Vondrášek J.; Marešová L.; Caffrey C. R.; Mareš M. (2011) Mapping the Pro-Peptide of the Schistosoma mansoni Cathepsin B1 Drug Target: Modulation of Inhibition by Heparin and Design of Mimetic Inhibitors. ACS Chem. Biol. 6 (6), 609–617. 10.1021/cb100411v. PubMed DOI
Jílková A.; Horn M.; Mareš M. (2020) Structural and Functional Characterization of Schistosoma mansoni Cathepsin B1. Methods Mol. Biol. 2151, 145–158. 10.1007/978-1-0716-0635-3_12. PubMed DOI
Mueller U.; Förster R.; Hellmig M.; Huschmann F. U.; Kastner A.; Malecki P.; Pühringer S.; Röwer M.; Sparta K.; Steffien M.; Ühlein M.; Wilk P.; Weiss M. S. (2015) The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus 130 (7), 141.10.1140/epjp/i2015-15141-2. DOI
Kabsch W. (2010) Xds. Acta Crystallogr., Sect. D: Biol. Crystallogr. 66 (2), 125–32. 10.1107/S0907444909047337. PubMed DOI PMC
Karplus P. A.; Diederichs K. (2012) Linking crystallographic model and data quality. Science 336 (6084), 1030–3. 10.1126/science.1218231. PubMed DOI PMC
Brünger A. T. (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355 (6359), 472–475. 10.1038/355472a0. PubMed DOI
Lovell S. C.; Davis I. W.; Arendall W. B. III; de Bakker P. I.; Word J. M.; Prisant M. G.; Richardson J. S.; Richardson D. C. (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins: Struct., Funct., Genet. 50 (3), 437–450. 10.1002/prot.10286. PubMed DOI
Vagin A.; Teplyakov A. (2000) An approach to multi-copy search in molecular replacement. Acta Crystallogr., Sect. D: Biol. Crystallogr. 56 (12), 1622–1624. 10.1107/S0907444900013780. PubMed DOI
Murshudov G. N.; Vagin A. A.; Dodson E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 53 (3), 240–255. 10.1107/S0907444996012255. PubMed DOI
Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr., Sect. D: Biol. Crystallogr. 67 (4), 235–242. 10.1107/S0907444910045749. PubMed DOI PMC
Emsley P.; Cowtan K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 60 (12), 2126–2132. 10.1107/S0907444904019158. PubMed DOI
Hostaš J.; Řezáč J. (2017) Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 13 (8), 3575–3585. 10.1021/acs.jctc.7b00365. PubMed DOI
Klamt A.; Schüürmann G. (1993) Cosmo - a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 2 (5), 799–805. 10.1039/P29930000799. DOI
Ahlrichs R.; Bar M.; Haser M.; Horn H.; Kolmel C. (1989) Electronic-Structure Calculations on Workstation Computers - the Program System Turbomole. Chem. Phys. Lett. 162 (3), 165–169. 10.1016/0009-2614(89)85118-8. DOI
Řezáč J. (2016) Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 37 (13), 1230–7. 10.1002/jcc.24312. PubMed DOI
Winn M. D.; Isupov M. N.; Murshudov G. N. (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr., Sect. D: Biol. Crystallogr. 57 (1), 122–133. 10.1107/S0907444900014736. PubMed DOI
Salentin S.; Schreiber S.; Haupt V. J.; Adasme M. F.; Schroeder M. (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 43 (W1), W443–W447. 10.1093/nar/gkv315. PubMed DOI PMC
Case D. A., Darden T. A., Cheatham I. T. E., Simmerling C. L., Wang J., Duke R. E., Luo R., Crowley M., Walker R. C., Zhang W., Merz K. M., Wang B., Hayik S., Roitberg A., Seabra G., Kolossváry I., Wong K. F., Paesani F., Vanicek J., Wu X., Brozell S. R., Steinbrecher T., Gohlke H., Yang L., Tan C., Mongan J., Hornak V., Cui G., Mathews D. H., Seetin M. G., Sagui C., Babin V., and Kollman P. A. (2008) AMBER 10, University of California, San Francisco.
Řezáč J.; Hobza P. (2012) Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 8 (1), 141–51. 10.1021/ct200751e. PubMed DOI
Stewart J. J. P. (2016) MOPAC2016, Stewart Computational Chemistry, Colorado Springs.
Vorlová B.; Nachtigallová D.; Jirásková-Vaníčková J.; Ajani H.; Jansa P.; Řezáč J.; Fanfrlík J.; Otyepka M.; Hobza P.; Konvalinka J.; Lepšík M. (2015) Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study. Eur. J. Med. Chem. 89, 189–97. 10.1016/j.ejmech.2014.10.043. PubMed DOI
Massova I.; Kollman P. A. (1999) Computational alanine scanning to probe protein-protein interactions: A novel approach to evaluate binding free energies. J. Am. Chem. Soc. 121 (36), 8133–8143. 10.1021/ja990935j. DOI
Pecina A.; Lepšík M.; Řezáč J.; Brynda J.; Mader P.; Řezáčová P.; Hobza P.; Fanfrlík J. (2013) QM/MM calculations reveal the different nature of the interaction of two carborane-based sulfamide inhibitors of human carbonic anhydrase II. J. Phys. Chem. B 117 (50), 16096–104. 10.1021/jp410216m. PubMed DOI
Fanfrlík J.; Brahmkshatriya P. S.; Řezáč J.; Jílková A.; Horn M.; Mareš M.; Hobza P.; Lepšík M. (2013) Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J. Phys. Chem. B 117 (48), 14973–14982. 10.1021/jp409604n. PubMed DOI
Stefanić S.; Dvořák J.; Horn M.; Braschi S.; Sojka D.; Ruelas D. S.; Suzuki B.; Lim K.-C.; Hopkins S. D.; McKerrow J. H.; Caffrey C. R. (2010) RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening. PLoS Neglected Trop. Dis. 4 (10), e850.10.1371/journal.pntd.0000850. PubMed DOI PMC
Basch P. F. (1981) Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J. Parasitol. 67 (2), 179–185. 10.2307/3280632. PubMed DOI
Dvořák J.; Fajtová P.; Ulrychová L.; Leontovyč A.; Rojo-Arreola L.; Suzuki B. M.; Horn M.; Mareš M.; Craik C. S.; Caffrey C. R.; O’Donoghue A. J. (2016) Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie 122, 99–109. 10.1016/j.biochi.2015.09.025. PubMed DOI PMC
Fajtová P.; Stefanić S.; Hradilek M.; Dvořák J.; Vondrášek J.; Jílková A.; Ulrychová L.; McKerrow J. H.; Caffrey C. R.; Mareš M.; Horn M. (2015) Prolyl Oligopeptidase from the Blood Fluke Schistosoma mansoni: From Functional Analysis to Anti-schistosomal Inhibitors. PLoS Neglected Trop. Dis. 9 (6), e0003827.10.1371/journal.pntd.0003827. PubMed DOI PMC