Advanced Chemical Computing Using Discrete Turing Patterns in Arrays of Coupled Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33195048
PubMed Central
PMC7658265
DOI
10.3389/fchem.2020.559650
Knihovny.cz E-zdroje
- Klíčová slova
- bifurcation analysis, chemical computing, coupled cells, discrete Turing patterns, glycolytic oscillations,
- Publikační typ
- časopisecké články MeSH
We examine dynamical switching among discrete Turing patterns that enable chemical computing performed by mass-coupled reaction cells arranged as arrays with various topological configurations: three coupled cells in a cyclic array, four coupled cells in a linear array, four coupled cells in a cyclic array, and four coupled cells in a branched array. Each cell is operating as a continuous stirred tank reactor, within which the glycolytic reaction takes place, represented by a skeleton inhibitor-activator model where ADP plays the role of activator and ATP is the inhibitor. The mass coupling between cells is assumed to be operating in three possible transport regimes: (i) equal transport coefficients of the inhibitor and activator (ii) slightly faster transport of the activator, and (iii) strongly faster transport of the inhibitor. Each cellular array is characterized by two pairs of tunable parameters, the rate coefficients of the autocatalytic and inhibitory steps, and the transport coefficients of the coupling. Using stability and bifurcation analysis we identified conditions for occurrence of discrete Turing patterns associated with non-uniform stationary states. We found stable symmetric and/or asymmetric discrete Turing patterns coexisting with stable uniform periodic oscillations. To switch from one of the coexisting stable regimes to another we use carefully targeted perturbations, which allows us to build systems of logic gates specific to each topological type of the array, which in turn enables to perform advanced modes of chemical computing. By combining chemical computing techniques in the arrays with glycolytic excitable channels, we propose a cellular assemblage design for advanced chemical computing.
Zobrazit více v PubMed
Adamatzky A. (1998). Universal dynamical computation in multidimensional excitable lattices. Int. J. Theor. Phys. 37, 3069–3108. 10.1023/A:1026604401265 DOI
Adamatzky A., Kitson S., Costello B. D. L., Matranga M. A., Younger D. (2011). Computing with liquid crystal fingers: models of geometric and logical computation. Phys. Rev. E 84:061702. 10.1103/PhysRevE.84.061702 PubMed DOI
Asakura K., Konishi R., Nakatani T., Nakano T., Kamata M. (2011). Turing pattern formation by the CIMA reaction in a chemical system consisting of quaternary alkyl ammonium cationic groups. J. Phys. Chem. B 115, 3959–3963. 10.1021/jp111584u PubMed DOI
Bagudu A., Kraemer C., Germann P., Menshykau D., Iber D. (2012). Digit patterning during limb development as a result of the BMP-receptor interaction. Sci. Rep. 2:991. 10.1038/srep00991 PubMed DOI PMC
Bagyan S., Mair T., Dulos E., Boissonade J., De Kepper P., Müller S. C. (2005). Glycolytic oscillations and waves in an open spatial reactor: impact of feedback regulation of phosphofructokinase. Biophys. Chem. 116, 67–76. 10.1016/j.bpc.2005.02.002 PubMed DOI
Bánsági T., Taylor A. F. (2015). Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers. Chaos 25:064308. 10.1063/1.4921767 PubMed DOI
Bar-Eli K. (1984). Coupling of chemical oscillators. J. Phys. Chem. 88, 3616–3622. 10.1021/j150660a048 PubMed DOI
Bar-Eli K., Reuveni S. (1985). Stable stationary states of coupled chemical oscillators. experimental evidence. J. Phys. Chem. 89, 1329–1330. 10.1021/j100254a002 DOI
Bolyó J., Mair T., Koncová G., Hauser M. J. B. (2010). Spatiotemporal dynamics of glycolytic waves provides new insights into the interactions between immobilized yeast cells and gels. Biophys. Chem. 153, 54–60. 10.1016/j.bpc.2010.10.004 PubMed DOI
Boole G. (1854). An Investigation into the Laws of Thought, on which are founded the Mathematical Theories of Logic and Probabilities. (Cambridge: Walton and Maberly; London: Macmillian and Co; ), 424 10.5962/bhl.title.29413 DOI
Castets V., Dulos E., Boissonade J., De Kepper P. (1990). experimental evidence of a sustained standing turing type nonequilibrium chemical pattern. Phys. Rev. Lett. 64:2953. 10.1103/PhysRevLett.64.2953 PubMed DOI
Crowley M. F., Epstein I. R. (1989). Experimental and theoretical studies of a coupled chemical oscillator: phase death, multlstability, and in-phase and out-of-phase entrainment. J. Phys. Chem. 93, 2496–2502. 10.1021/j100343a052 DOI
Deville-Bonne D., Bourgain F., Garel J. R. (1991). pH dependence of the kinetic properties of allosteric phosphofructokinase from escherichia coli. Biochemistry 30, 5750–5754. 10.1021/bi00237a017 PubMed DOI
Dolník M., Berenstein I., Zhabotinsky A. M., Epstein I. R. (2001). Spatial periodic forcing of turing structures. Phys. Rev. Lett. 87:238301. 10.1103/PhysRevLett.87.238301 PubMed DOI
Dolník M., Marek M. (1988). Extinction of oscillations in forced and coupled reaction cells. J. Phys. Chem. 92, 2452–2455. 10.1021/j100320a014 DOI
Engl E., Attwell D. (2015). Non-signalling energy use in the brain. J. Physiol. 593, 3417–3429. 10.1113/jphysiol.2014.282517 PubMed DOI PMC
Fratto B. E., Katz E. (2016). Controlled logic gates—switch gate and fredkin gate based on enzyme-biocatalyzed reactions realized in flow cells. ChemPhysChem 17, 1046–1053. 10.1002/cphc.201501095 PubMed DOI
Fratto B. E., Lewer J. M., Katz E. (2016). An enzyme-based half-adder and half-subtractor with a modular design. ChemPhysChem 17, 2210–2217. 10.1002/cphc.201600173 PubMed DOI
Garzón-Alvarado D. A., Martinez A. M. R., Segrera D. L. L. (2011). A model of cerebral cortex formation during fetal development using reaction–diffusion–convection equations with Turing space parameters. Comput. Methods Prog. Biomed. 104, 489–497. 10.1016/j.cmpb.2011.07.001 PubMed DOI
Giese W., Eigel M., Westerheide S., Engwer S., Klipp E. (2017). Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models. Phys. Biol. 12:066014. 10.1088/1478-3975/12/6/066014 PubMed DOI
Goldbeter A., Moran F. (1984). Onset of birhytmicity in a regulated biochemical system. Biophys. Chem. 20, 149–156. 10.1016/0301-4622(84)80014-9 PubMed DOI
Górecka J., Górecki J. (2003). T-shaped coincidence detector as a band filter of chemical signal frequency. Phys. Rev. E 67:067203. 10.1103/PhysRevE.67.067203 PubMed DOI
Gorecka J., Gorecki J. (2005). On one dimensional chemical diode and frequency generator constructed with an excitable surface reaction. Phys. Chem. Chem. Phys. 7, 2915–2920. 10.1039/b504621a PubMed DOI
Górecka J., Górecki J. (2006). Multiargument logical operations performed with excitable chemical medium. J. Chem. Phys. 12:084101 10.1063/1.2170076 PubMed DOI
Gorecka J. N., Górecki J., Igarashi Y. (2007). One dimensional chemical signal diode constructed with two nonexcitable barriers. J. Phys. Chem. A 111, 885–889. 10.1021/jp0662404 PubMed DOI
Górecki J., Górecka J. N., Adamatzky A. (2014). Information coding with frequency of oscillations in belousov-zhabotinsky encapsulated disks. Phys. Rev. E 89:042910. 10.1103/PhysRevE.89.042910 PubMed DOI
Górecki J., Górecka J. N., Igarashi Y., Yoshikawa K. (2009). Information processing with structured chemical excitable medium. Nat. Comput. 1, 48–68. 10.1007/978-4-431-88981-6_5 PubMed DOI
Górecki J., Yoshikawa K., Igarashi Y. (2003). On chemical reactors that can count. J. Phys. Chem. A 107, 1664–1669. 10.1021/jp021041f DOI
Hadač O., Muzika F., Nevoral V., Schreiber I., Pribyl M. (2017). Minimal oscillating subnetwork in the huang-ferrell model of the MAPK cascade. PLoS ONE 12:e017845. 10.1371/journal.pone.0178457 PubMed DOI PMC
Hereng T. H., Elgstøen K. B. P., Eide L., Rosendal K. R., Skålhegg B. S. (2014). Serum albumin and HCO3- regulate separate pools of ATP in human spermatozoa. Hum. Reprod. 29, 918–930. 10.1093/humrep/deu028 PubMed DOI
Hjelmfelt A., Ross J. (1993). Mass-coupled chemical systems with computational properties. J. Phys. Chem. 97, 7988–7992. 10.1021/j100132a030 DOI
Hjelmfelt A., Schneider F. W., Ross J. (1993). Pattern recognition in coupled chemical kinetic systems. Sci. N. Ser. 260, 335–337. 10.1126/science.260.5106.335 PubMed DOI
Holley J., Jahan I., Costello B. D. L., Bull L., Adamatzky A. (2011). Logical and arithmetic circuits in Belousov-Zhabotinsky encapsulated disks. Phys. Rev. E 84:056110. 10.1103/PhysRevE.84.056110 PubMed DOI
Horvath J., Szalai I., De Kepper P. (2009). An experimental design method leading to chemical turing patterns. Science 324, 772–775. 10.1126/science.1169973 PubMed DOI
Howard G., Bull L., Costello B. D. L., Gale E., Adamatzky A. (2014). Evolving spiking networks with variable resistive memories. Evol. Comput. 22, 79–103. 10.1162/EVCO_a_00103 PubMed DOI
Hynne F., Danø S., Sørensen P. G. (2001). Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94, 121–163. 10.1016/S0301-4622(01)00229-0 PubMed DOI
Igarashi Y., Górecki J., Gorecka J. N. (2008). One dimensional signal diodes constructed with excitable chemical system. Acta Phys. Polonica B 39:1187–1197. Available online at: https://www.actaphys.uj.edu.pl/R/39/5/1187/pdf
Kerszberg M., Wolpert L. (1998). Mechanisms for positional signalling by morphogen transport a theoretical study. Theor J. Biol. 191, 103–114. 10.1006/jtbi.1997.0575 PubMed DOI
Kim J., Winfree E. (2011). Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7:465. 10.1038/msb.2010.119 PubMed DOI PMC
Kohout M., Schreiber I., Marek M. (2002). A computational tool for nonlinear dynamical and bifurcation analysis of chemical engineering problems. Compt. Chem. Eng. 26, 517–527. 10.1016/S0098-1354(01)00783-9 DOI
Kondo S., Miura T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620. 10.1126/science.1179047 PubMed DOI
Kozubowski L., Saito K., Johnson J. M., Howell A. S., Zyla T. R., Lew D. J. (2008). Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr. Biol. 18, 1719–1726. 10.1016/j.cub.2008.09.060 PubMed DOI PMC
Kubíček M., Marek M. (1983). Computational Methods In Bifurcation Theory And Dissipative Structures. (New York, NY: Springer Verlag; ), 243 10.1007/978-3-642-85957-1 DOI
Locovei S., Wang J., Dahl G. (2006). Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 580, 239–244. 10.1016/j.febslet.2005.12.004 PubMed DOI
Lue J. C., Fang W. C. (2008). Bio-inspired microsystem for robust genetic assay recognition. J. Biomed. Biotechnol. 2008:259174. 10.1155/2008/259174 PubMed DOI PMC
Mailloux S., Gerasimova Y. V., Guz N., Kolpashchikov D. M., Katz E. (2015). Bridging the two worlds: a universal interface between enzymatic and DNA computing systems. Angew. Chem. Int. Ed. Engl. 54, 6562–6566. 10.1002/anie.201411148 PubMed DOI PMC
Majaj N. J., Hong H., Solomon E. A., Dicarlo J. J. (2015). Simple learned weighted sums of inferior temporal neuronal firing rates accurately predict human core object recognition performance. J. Neurosci. 35, 13402–13418. 10.1523/JNEUROSCI.5181-14.2015 PubMed DOI PMC
McMurtrey R. J. (2016). Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids. Tissue Eng. 22, 221–249. 10.1089/ten.tec.2015.0375 PubMed DOI PMC
Mediavilla D., Metón I., Baanate I. V. (2007). Purification and kinetic properties of 6-phosphofructo-1-kinase from gilthead sea bream muscle. Biochim. Biophys. Acta 1770, 706–715. 10.1016/j.bbagen.2006.11.014 PubMed DOI
Meinhardt M., Gierer A. (1974). Application of a theory of biological pattern formation based on lateral inhibition. J. Cell Sci. 15, 321–346. PubMed
Meinhardt M., Gierer A. (2000). Pattern formation by local self-activation and lateral inhibition. BioEssays 22, 753–760. 10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z PubMed DOI
Monod J., Wyman J., Changeux J. P. (1965). On the nature of allosteric transition: a plausible model. J. Mol. Biol. 12, 88–118. 10.1016/S0022-2836(65)80285-6 PubMed DOI
Muzika F., Schreiber I. (2013). Control of turing patterns and their usage as sensors, memory arrays, and logic gates. J. Chem. Phys. 139:164108. 10.1063/1.4825379 PubMed DOI
Muzika F., Schreiberová L., Schreiber I. (2014). Chemical computing based on turing patterns in two coupled cells with equal transport coefficients. RSC Adv. 4, 56165–56173. 10.1039/C4RA08859J DOI
Muzika F., Schreiberová L., Schreiber I. (2016). Discrete turing patterns in coupled reaction cells in a cyclic array. Reac. Kinet. Mech. Cat. 118, 99–114. 10.1007/s11144-016-1004-y DOI
Ouyang Q., Li R., Li G., Swinney H. L. (1995). Sustained patterns in chlorite–iodide reactions in a onedimensional reactor. J. Chem. Phys. 102:2551–2555. 10.1063/1.468684 DOI
Pita M., Strack G., MacVittie K., Zhou J., Katz E. (2009). Set–reset flip-flop memory based on enzyme reactions: toward memory systems controlled by biochemical pathways. J. Phys. Chem. B 113, 16071–16076. 10.1021/jp908291f PubMed DOI
Privman V., Fratto B. E., Zavalov O., Halámek J., Katz E. (2013a). Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output. J. Phys. Chem. B 117, 7559–7568. 10.1021/jp404054f PubMed DOI
Privman V., Zavalov O., Halámková L., Moseley F., Halámek J., Katz E. (2013b). Networked enzymatic logic gates with filtering: new theoretical modeling expressions and their experimental application. J. Phys. Chem. B 117, 14928–14939. 10.1021/jp408973g PubMed DOI
Qian L., Winfree E., Bruck J. (2011). Neural network computation with DNA strand displacement cascades. Nature 475, 368–372. 10.1038/nature10262 PubMed DOI
Roy K., Sharad M., Fan D., Yogendra K. (2014). “Brain-inspired computing with spin torque devices,” in DATE '14: Proceedings of the Conference on Design, Automation & Test in Europe (Dresden: ), 1–6. 10.7873/DATE.2014.245 DOI
Rudovics B., Barillot E., Davies P. W., Dulos E., Boissonade J., De Kepper P. (1999). Experimental studies and quantitative modeling of turing patterns in the (chlorine dioxide, iodine, malonic acid) reaction. J. Phys. Chem. A 103, 1790–1800. 10.1021/jp983210v DOI
Sanz-Anchelergues A., Zhabotinsky A. M., Epstein I. R., Mañuzuri A. P. (2001). Turing pattern formation induced by spatially correlated noise. Phys. Rev. E 63:056124. 10.1103/PhysRevE.63.056124 PubMed DOI
Sauro H. M., Kholodenko B. N. (2004). Quantitative analysis of signaling networks. Prog. Biophys. Mol. Biol. 86, 5–44. 10.1016/j.pbiomolbio.2004.03.002 PubMed DOI
Shen J., Ma D., Gu Z., Zhang M., Zhu X., Xu X., et al. (2016). Darwin: a neuromorphic hardware co-processor based on spiking neural networks. Sci. China Inf. Sci. 59:023401 10.1007/s11432-015-5511-7 DOI
Sielewiesiuk J., Górecki J. (2001). Logical functions of a cross junction of excitable chemical media. Phys. Chem. A 105, 8189–8195. 10.1021/jp011072v DOI
Snowdon C., Johnston M. (2016). A novel role for yeast casein kinases in glucose sensing and signaling. Mol. Biol. Cell 27, 3369–3375. 10.1091/mbc.E16-05-0342 PubMed DOI PMC
Tlapak-Simmons V. L., Reinhart G. D. (1998). Obfuscation of allosteric structure–function relationships by enthalpy–entropy compensation. Biophys. J. 75, 1010–1015. 10.1016/S0006-3495(98)77589-7 PubMed DOI PMC
Turing A. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72. 10.1098/rstb.1952.0012 PubMed DOI PMC
Vanag V. K., Epstein I. R. (2001). Pattern formation in a tunable medium: the belousov-zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87:228301. 10.1103/PhysRevLett.87.228301 PubMed DOI
Vastano J. A., Pearson J. E., Horsthemke W., Swinney H. L. (1987). Chemical pattern formation with equal diffusion coefficients. Phys. Lett. A 124, 320–324. 10.1016/0375-9601(87)90019-3 DOI
Verderioa C., Matteolia M. (2011). ATP in neuron–glia bidirectional signaling. Brain Res. Rev. 66, 106–114. 10.1016/j.brainresrev.2010.04.007 PubMed DOI
Wolpert L. (1969). Positional information and the spatial pattern of cellular differentiation. J. Theoret. Biol. 25, 1–47. 10.1016/S0022-5193(69)80016-0 PubMed DOI
Yoshimoto M., Yoshikawa K., Mori Y. (1993). Coupling among three chemical oscillators: synchronization, phase death, and frustration. Phys. Rev. E 47, 864–874. 10.1103/PhysRevE.47.864 PubMed DOI