Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28636629
PubMed Central
PMC5479530
DOI
10.1371/journal.pone.0178457
PII: PONE-D-16-48016
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- kinetika MeSH
- lidé MeSH
- MAP kinasový signální systém * MeSH
- počítačová simulace * MeSH
- teoretické modely * MeSH
- zpětná vazba fyziologická * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Prompted by the recent growing evidence of oscillatory behavior involving MAPK cascades we present a systematic approach of analyzing models and elucidating the nature of biochemical oscillations based on reaction network theory. In particular, we formulate a minimal biochemically consistent mass action subnetwork of the Huang-Ferrell model of the MAPK signalling that provides an oscillatory response when a parameter controlling the activation of the top-tier kinase is varied. Such dynamics are either intertwined with or separated from the earlier found bistable/hysteretic behavior in this model. Using the theory of stability of stoichiometric networks, we reduce the original MAPK model, convert kinetic to convex parameters and examine those properties of the minimal subnetwork that underlie the oscillatory dynamics. We also use the methods of classification of chemical oscillatory networks to explain the rhythmic behavior in physicochemical terms, i.e., we identify of the role of individual biochemical species in positive and negative feedback loops and describe their coordinated action leading to oscillations. Our approach provides an insight into dynamics without the necessity of knowing rate coefficients and thus is useful prior the statistical evaluation of parameters.
Zobrazit více v PubMed
Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40. 10.1038/35065000 PubMed DOI
Huang C, Ferrell J. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1996;93(19):10078–10083. 10.1073/pnas.93.19.10078 PubMed DOI PMC
Burack W, Sturgill T. The activating dual phosphorylation of MAPK by MEK is nonprocessive. Biochemistry. 1997;36(20):5929–5933. 10.1021/bi970535d PubMed DOI
Kholodenko BN, Birtwistle MR. Four-dimensional dynamics of MAPK information-processing systems. Wiley Interdiscip Rev-Syst Biol. 2009;1(1):28–44. 10.1002/wsbm.16 PubMed DOI PMC
Pribyl M, Muratov C, Shvartsman S. Discrete models of autocrine cell communication in epithelial layers. Biophys J. 2003;84(6):3624–3635. 10.1016/S0006-3495(03)75093-0 PubMed DOI PMC
Nebyla M, Pribyl M, Schreiber I. Effects of Convective Transport on Chemical Signal Propagation in Epithelia. Biophys J. 2012;102(5):990–1000. 10.1016/j.bpj.2012.01.038 PubMed DOI PMC
Li G, Qian H. Sensitivity and specificity amplification in signal transduction. Cell Biochem Biophys. 2003;39(1):45–59. 10.1385/CBB:39:1:45 PubMed DOI
Kholodenko B. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem. 2000;267(6):1583–1588. 10.1046/j.1432-1327.2000.01197.x PubMed DOI
Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, Ichikawa M, et al. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J. 2003;373(2):451–463. 10.1042/BJ20021824 PubMed DOI PMC
Yi M, Zhao Q, Tang J, Wang C. A theoretical modeling for frequency modulation of Ca2+ signal on activation of MAPK cascade. Biophys Chem. 2011;157(1-3):33–42. 10.1016/j.bpc.2011.04.007 PubMed DOI
Chickarmane V, Kholodenko BN, Sauro HM. Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. J Theor Biol. 2007;244(1):68–76. 10.1016/j.jtbi.2006.05.013 PubMed DOI
Bluthgen N, Bruggeman F, Legewie S, Herzel H, Westerhoff H, Kholodenko B. Effects of sequestration on signal transduction cascades. FEBS J. 2006;273(5):895–906. 10.1111/j.1742-4658.2006.05105.x PubMed DOI
Nguyen LK. Regulation of oscillation dynamics in biochemical systems with dual negative feedback loops. J R Soc Interface. 2012;9(73):1998–2010. 10.1098/rsif.2012.0028 PubMed DOI PMC
Mai Z, Liu H. Random Parameter Sampling of a Generic Three-Tier MAPK Cascade Model Reveals Major Factors Affecting Its Versatile Dynamics. PLoS One. 2013;8(1):e54441 10.1371/journal.pone.0054441 PubMed DOI PMC
Markevich N, Hoek J, Kholodenko B. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol. 2004;164(3):353–359. 10.1083/jcb.200308060 PubMed DOI PMC
Wang X, Hao N, Dohlman H, Elston T. Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade. Biophys J. 2006;90(6):1961–1978. 10.1529/biophysj.105.073874 PubMed DOI PMC
Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY. Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput Biol. 2007;3(9):1819–1826. 10.1371/journal.pcbi.0030184 PubMed DOI PMC
Conradi C, Flockerzi D, Raisch J. Multistationarity in the activation of a MAPK: Parametrizing the relevant region in parameter space. Math Biosci. 2008;211(1):105–131. 10.1016/j.mbs.2007.10.004 PubMed DOI
Feinberg M. Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems. Chem Eng Sci. 1987;42(10):2229–2268. 10.1016/0009-2509(87)80099-4 DOI
Feinberg M. Chemical reaction network structure and the stability of complex isothermal reactors-II. Multiple steady states for networks of deficiency one. Chem Eng Sci. 1988;43(1):1–25. 10.1016/0009-2509(88)87122-7 DOI
Perez Millan M, Turjanski AG. MAPK’s networks and their capacity for multistationarity due to toric steady states. Math Biosci. 2015;262:125–137. 10.1016/j.mbs.2014.12.010 PubMed DOI
Ventura AC, Sepulchre JA, Merajver SD. A hidden feedback in signaling cascades is revealed. PLoS Comput Biol. 2008;4(3):e1000041 10.1371/journal.pcbi.1000041 PubMed DOI PMC
Sepulchre JA, Ventura AC; French Speaking Soc Theoret Biol; Rhone-Alpes Complex Syst Inst (IXXI); Univ Joseph Fourier; Ctr Natl Rech Sci (CNRS). Intrinsic Feedbacks in MAPK Signaling Cascades Lead to Bistability and Oscillations. Acta Biotheor. 2013;61(1):59–78. 10.1007/s10441-013-9177-5 PubMed DOI
Arcak M, Sontag ED. A passivity-based stability criterion for a class of biochemical reaction networks. Math Biosci Eng. 2008;5(1):1–19. 10.3934/mbe.2008.5.1 PubMed DOI
Zumsande M, Gross T. Bifurcations and chaos in the MAPK signaling cascade. J Theor Biol. 2010;265(3):481–491. 10.1016/j.jtbi.2010.04.025 PubMed DOI
Vera J, Rath O, Balsa-Canto E, Banga JR, Kolch W, Wolkenhauer O. Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models. Mol Biosyst. 2010;6(11):2174–2191. 10.1039/c0mb00018c PubMed DOI
Zhao Q, Yi M, Liu Y. Spatial distribution and dose-response relationship for different operation modes in a reaction-diffusion model of the MAPK cascade. Phys Biol. 2011;8(5, SI):055004 10.1088/1478-3975/8/5/055004 PubMed DOI
Nomura M, Okada-Hatakeyama M. Phase responses of oscillating components in a signaling pathway. Front Physiol. 2013;4:68 10.3389/fphys.2013.00068 PubMed DOI PMC
Hilioti Z, Sabbagh W Jr, Paliwal S, Bergmann A, Goncalves MD, Bardwell L, et al. Oscillatory Phosphorylation of Yeast Fus3 MAP Kinase Controls Periodic Gene Expression and Morphogenesis. Curr Biol. 2008;18(21):1700–1706. 10.1016/j.cub.2008.09.027 PubMed DOI PMC
Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger N, Opresko LK, et al. Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol. 2009;5:332 10.1038/msb.2009.90 PubMed DOI PMC
Nakayama K, Satoh T, Igari A, Kageyama R, Nishida E. FGF induces oscillations of Hes1 expression and Ras/ERK activation. Curr Biol. 2008;18(8):R332–R334. 10.1016/j.cub.2008.03.013 PubMed DOI
Hu H, Goltsov A, Bown JL, Sims AH, Langdon SP, Harrison DJ, et al. Feedforward and feedback regulation of the MAPK and PI3K oscillatory circuit in breast cancer. Cell Signal. 2013;25(1):26–32. 10.1016/j.cellsig.2012.09.014 PubMed DOI
Hadac O, Schreiber I, Pribyl M. On the origin of bistability in the Stage 2 of the Huang-Ferrell model of the MAPK signaling. J Chem Phys. 2013;138(6):065102 10.1063/1.4790126 PubMed DOI
Clarke BL. Stability of complex reaction networks. Adv Chem Phys. 1980;43:1–278.
Hadley G. Linear Programming. Addison-Wesley Publishing Company; 1962.
Schilling CH, Letscher D, Palsson BO. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from? A pathway-oriented perspective. Journal of Theoretical Biology. 2000;203(3):229–248. 10.1006/jtbi.2000.1073 PubMed DOI
Schuster S, Hilgetag C, Woods JH, Fell DA. Reaction routes in biochemical reaction systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism. Journal of Mathematical Biology. 2002;45(2):153–181. 10.1007/s002850200143 PubMed DOI
Eiswirth M, Bürger J, Strasser P, Ertl G. Oscillating Langmuir-Hinshelwood Mechanisms. J Phys Chem. 1996;100:19118–19123. 10.1021/jp961688y DOI
Errami H, Eiswirth M, Grigoriev D, Seiler W, Sturm T, Weber A. Detection of Hopf bifurcations in chemical reaction networks using convex coordinates. J Comp Phys. 2015;18:279–302. 10.1016/j.jcp.2015.02.050 DOI
Freund A, Eiswirth M, Ross J. Mechanistic classification of chemical oscillators and the role of species. Adv Chem Phys. 1991;100:127–199.
Ross J, Schreiber I, Vlad M. Determination of Complex Reaction Mechanisms: Analysis of Chemical, Biological, and Genetic Networks. Oxford University Press; 2005. PubMed
Hung YF, Schreiber I, Ross J. New Reaction Mechanism for the Oscillatory Peroxidase-Oxidase Reaction and Comparison with Experiments. J Phys Chem. 1995;99:1980–1987. 10.1021/j100007a031 DOI
Kubíček M, Marek M. Computational methods in bifurcation theory and dissipative structures. Springer Verlag, New York; 1983.
Marek M, Schreiber I. Chaotic Behaviour of Deterministic Dissipative Systems. Cambridge Univ. Press, Cambridge; 1991. and 1995.
Pismen LM. Patterns and Interfaces in Dissipative Dynamics. Springer-Verlag; Berlin Heidelberg; 2006.
Conradi C, Shiu A. A global convergence result for processive multisite phosphorylation systems. Bull Math Biol. 2015;77:126–155. 10.1007/s11538-014-0054-4 PubMed DOI
Rubinstein BY, Mattingly HH, Berezhkovskii AM, Shvartsman SY. Long-term dynamics of multisite phosphorylation. Mol Biol Cell. 2016;27(14):2331–2340. 10.1091/mbc.E16-03-0137 PubMed DOI PMC