Effects of convective transport on chemical signal propagation in epithelia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22404921
PubMed Central
PMC3296054
DOI
10.1016/j.bpj.2012.01.038
PII: S0006-3495(12)00153-1
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- epitel metabolismus MeSH
- ligandy MeSH
- mezibuněčné signální peptidy a proteiny metabolismus MeSH
- signální transdukce * MeSH
- transport proteinů MeSH
- zpětná vazba fyziologická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- mezibuněčné signální peptidy a proteiny MeSH
We study effects of convective transport on a chemical front wave representing a signal propagation at a simple (single layer) epithelium by means of mathematical modeling. Plug flow and laminar flow regimes were considered. We observed a nonmonotonous dependence of the propagation velocity on the ligand receptor binding constant under influence of the convective transport. If the signal propagates downstream, the region of high velocities becomes much broader and spreads over several orders of magnitude of the binding constant. When the convective transport is oriented against the propagating signal, either velocity of the traveling front wave is slowed down or the traveling front wave can stop or reverse the direction of propagation. More importantly, chemical signal in epithelial systems influenced by the convective transport can propagate almost independently of the ligand-receptor binding constant in a broad range of this parameter. Furthermore, we found that the effects of the convective transport becomes more significant in systems where either the characteristic dimension of the extracellular space is larger/comparable with the spatial extent of the ligand diffusion trafficking or the ligand-receptor binding/ligand diffusion rate ratio is high.
Zobrazit více v PubMed
Heldin C.H. Academic Press; San Diego, CA: 2011. Functioning of transmembrane receptors in cell signaling.
Mandell J.W., Gocan N.C., Vandenberg S.R. Mechanical trauma induces rapid astroglial activation of ERK/MAP kinase: evidence for a paracrine signal. Glia. 2001;34:283–295. PubMed
Kim H.G., Kassis J., Wells A. EGF receptor signaling in prostate morphogenesis and tumorigenesis. Histol. Histopathol. 1999;14:1175–1182. PubMed
Swartz M.A. Signaling in morphogenesis: transport cues in morphogenesis. Curr. Opin. Biotechnol. 2003;14:547–550. PubMed
Cartwright J.H.E., Piro O., Tuval I. Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc. Natl. Acad. Sci. USA. 2004;101:7234–7239. PubMed PMC
Okada Y., Takeda S., Hirokawa N. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell. 2005;121:633–644. PubMed
Rutkowski J.M., Swartz M.A. A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol. 2007;17:44–50. PubMed
Lee D.Y., Li Y.S.J., Chien S. Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by alpha(v)beta(3) and beta(1) integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway. J. Biol. Chem. 2010;285:30–42. PubMed PMC
Shi Z.D., Ji X.Y., Tarbell J.M. Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H1225–H1234. PubMed PMC
Shi Z.D., Ji X.Y., Tarbell J.M. Interstitial flow induces MMP-1 expression and vascular SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism. Am. J. Physiol. Heart Circ. Physiol. 2010;298:H127–H135. PubMed PMC
Boardman K.C., Swartz M.A. Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 2003;92:801–808. PubMed
Helm C.L.E., Fleury M.E., Swartz M.A. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA. 2005;102:15779–15784. PubMed PMC
Semino C.E., Kamm R.D., Lauffenburger D.A. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp. Cell Res. 2006;312:289–298. PubMed
Hernández Vera R., Genové E., Semino C.E. Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis. Tissue Eng. Part A. 2009;15:175–185. PubMed PMC
Pozrikidis C. Numerical simulation of blood and interstitial flow through a solid tumor. J. Math. Biol. 2010;60:75–94. PubMed
Song J.W., Munn L.L. Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. USA. 2011;108:15342–15347. PubMed PMC
Shieh A.C., Swartz M.A. Regulation of tumor invasion by interstitial fluid flow. Phys. Biol. 2011;8:015012. PubMed
Bobo R.H., Laske D.W., Oldfield E.H. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA. 1994;91:2076–2080. PubMed PMC
Chen D., Norris D., Ventikos Y. The active and passive ciliary motion in the embryo node: a computational fluid dynamics model. J. Biomech. 2009;42:210–216. PubMed
Nguyen T.H., Eichmann A., Fleury V. Dynamics of vascular branching morphogenesis: the effect of blood and tissue flow. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006;73:061907. PubMed
Fleury M.E., Boardman K.C., Swartz M.A. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 2006;91:113–121. PubMed PMC
Luss D., Sheintuch M. Spatiotemporal patterns in catalytic systems. Catal. Today. 2005;105:254–274.
Sheintuch M., Nekhamkina O. Thermal patterns in simple models of cylindrical reactors. Chem. Eng. Sci. 2003;58:1441–1451.
Nekhamkina O., Sheintuch M. Transversal moving-front patterns: criteria and simulations for two bed and cylindrical shell packed-bed reactors. Chem. Eng. Sci. 2008;63:3716–3726.
Dixon J.B., Raghunathan S., Swartz M.A. A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics. Biotechnol. Bioeng. 2009;103:1224–1235. PubMed PMC
Dobens L.L., Raftery L.A. Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev. Dyn. 2000;218:80–93. PubMed
Pribyl M., Muratov C.B., Shvartsman S.Y. Long-range signal transmission in autocrine relays. Biophys. J. 2003;84:883–896. PubMed PMC
Muratov C.B., Posta F., Shvartsman S.Y. Autocrine signal transmission with extracellular ligand degradation. Phys. Biol. 2009;6:016006. PubMed
Ng C.P., Helm C.L.E., Swartz M.A. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 2004;68:258–264. PubMed
Tomei A.A., Siegert S., Swartz M.A. Fluid flow regulates stromal cell organization and CCL21 expressions in a tissue-engineered lymph node microenvironment. J. Immunol. 2009;183:4273–4283. PubMed
Haessler U., Kalinin Y., Wu M. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices. 2009;11:827–835. PubMed
Chang S.F., Chang C.A., Chiu J.J. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc. Natl. Acad. Sci. USA. 2008;105:3927–3932. PubMed PMC
Shamloo A., Ma N., Heilshorn S.C. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip. 2008;8:1292–1299. PubMed
Park J.Y., Yoo S.J., Lee S.H. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Lab Chip. 2009;9:2194–2202. PubMed
Shin H.S., Kim H.J., Jeon N.L. Shear stress effect on transfection of neurons cultured in microfluidic devices. J. Nanosci. Nanotechnol. 2009;9:7330–7335. PubMed
Deen W.M. Oxford University Press; New York: 1998. Analysis of Transport Phenomena.
Bird R.B., Stewart W.E., Lightfoot E.N. John Wiley & Sons; New York: 2002. Transport Phenomena.
White F.M. McGraw-Hill; New York: 1994. Fluid Mechanics.
Qiao L., Nachbar R.B., Shvartsman S.Y. Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLOS Comput. Biol. 2007;3:1819–1826. PubMed PMC
Shvartsman S.Y., Hagan M.P., Lauffenburger D.A. Autocrine loops with positive feedback enable context-dependent cell signaling. Am. J. Physiol. Cell Physiol. 2002;282:C545–C559. PubMed
Ferrell J.E., Jr., Machleder E.M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998;280:895–898. PubMed
Pribyl M., Muratov C.B., Shvartsman S.Y. Discrete models of autocrine cell communication in epithelial layers. Biophys. J. 2003;84:3624–3635. PubMed PMC
Shvartsman S.Y., Wiley H.S., Lauffenburger D.A. Spatial range of autocrine signaling: modeling and computational analysis. Biophys. J. 2001;81:1854–1867. PubMed PMC
Doedel E.J., Oldeman B.E. Concordia University; Montreal, Canada: 2009. AUTO-07P: Continuation and bifurcation software for ordinary differential equations.
Aris R. On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 1956;235:67–77.
Kolev S.D., van der Linden W.E. Laminar dispersion in parallel plate sections of flow systems used in analytical chemistry and chemical engineering. Anal. Chim. Acta. 1991;247:51–60.
Grayson W.L., Fröhlich M., Vunjak-Novakovic G. Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA. 2010;107:3299–3304. PubMed PMC
Chung S., Sudo R., Kamm R.D. Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Ann. Biomed. Eng. 2010;38:1164–1177. PubMed
Galie P.A., Stegemann J.P. Simultaneous application of interstitial flow and cyclic mechanical strain to a three-dimensional cell-seeded hydrogel. Tissue Eng. Part C Methods. 2011;17:527–536. PubMed PMC
Krakstad C., Chekenya M. Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol. Cancer. 2010;9:135. PubMed PMC
Varma A., Morbidelli M. Oxford University Press; New York: 1997. Mathematical Methods in Chemical Engineering.
Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade