Oscillatory flow accelerates autocrine signaling due to nonlinear effect of convection on receptor-related actions

. 2013 Aug 06 ; 105 (3) : 818-28.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23931329
Odkazy

PubMed 23931329
PubMed Central PMC3736679
DOI 10.1016/j.bpj.2013.06.026
PII: S0006-3495(13)00705-4
Knihovny.cz E-zdroje

We study effects of oscillatory convective flow in extracellular space on the velocity of chemical signal propagation having a form of a front wave above a cellular layer. We found that the time-averaged propagation velocity under oscillatory flow for a particular Péclet number amplitude is slower than the velocity under steady laminar flow regime for the same value of the Péclet number, but significantly faster than under no-flow conditions. We derive asymptotic values of the propagation velocity and asymptotic characteristics of the corresponding concentration fronts in high- and low-frequency regimes and show that the reason for the observed velocity increase under the oscillatory flow stems from a nonlinear dependence of the propagation velocity on the Péclet number, particularly from the convex character of the dependence. Our findings suggest that the specific responses of cellular cultures to different flow conditions in the extracellular space (for example, expression of atherosclerosis protective genes under steady laminar flow but not under oscillatory flow) is a consequence of a nonlinear coupling between the extracellular transport and complex intracellular reaction cascades forming a positive feedback loop of the autocrine signaling. This mechanism can operate independently of, or in conjunction with, a direct stress-sensing due to mechanotransduction.

Zobrazit více v PubMed

Cartwright J.H.E., Piro O., Tuval I. Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc. Natl. Acad. Sci. USA. 2004;101:7234–7239. PubMed PMC

Ng C.P., Helm C.L.E., Swartz M.A. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 2004;68:258–264. PubMed

Chang S.F., Chang C.A., Chiu J.J. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc. Natl. Acad. Sci. USA. 2008;105:3927–3932. PubMed PMC

Polacheck W.J., Charest J.L., Kamm R.D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. USA. 2011;108:11115–11120. PubMed PMC

Shi Z.-D., Ji X.-Y., Tarbell J.M. Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H1225–H1234. PubMed PMC

Bruyère F., Noël A. Lymphangiogenesis: in vitro and in vivo models. FASEB J. 2010;24:8–21. PubMed

Tomei A.A., Siegert S., Swartz M.A. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 2009;183:4273–4283. PubMed

Fleury M.E., Boardman K.C., Swartz M.A. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 2006;91:113–121. PubMed PMC

Pedersen J.A., Swartz M.A. Mechanobiology in the third dimension. Ann. Biomed. Eng. 2005;33:1469–1490. PubMed

Helm C.L.E., Fleury M.E., Swartz M.A. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA. 2005;102:15779–15784. PubMed PMC

Hernández V.R., Genové E., Semino C.E. Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis. Tissue Eng. Part A. 2009;15:175–185. PubMed PMC

Shi Z.-D., Tarbell J.M. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 2011;39:1608–1619. PubMed PMC

Semino C.E., Kamm R.D., Lauffenburger D.A. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp. Cell Res. 2006;312:289–298. PubMed

Rutkowski J.M., Swartz M.A. A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol. 2007;17:44–50. PubMed

Shamloo A., Ma N., Heilshorn S.C. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip. 2008;8:1292–1299. PubMed

Song J.W., Munn L.L. Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. USA. 2011;108:15342–15347. PubMed PMC

Barakat A., Lieu D. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem. Biophys. 2003;38:323–343. PubMed

Thoumine O., Nerem R.M., Girard P.R. Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells. In Vitro Cell. Dev. Biol. Anim. 1995;31:45–54. PubMed

De Keulenaer G.W., Chappell D.C., Griendling K.K. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ. Res. 1998;82:1094–1101. PubMed

Magid R., Murphy T.J., Galis Z.S. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress. Role of c-Myc. J. Biol. Chem. 2003;278:32994–32999. PubMed

Chen X.L., Grey J.Y., Kunsch C. Sphingosine kinase-1 mediates TNF-α-induced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow. Am. J. Physiol. Heart Circ. Physiol. 2004;287:H1452–H1458. PubMed

Hahn C., Orr A.W., Schwartz M.A. The subendothelial extracellular matrix modulates JNK activation by flow. Circ. Res. 2009;104:995–1003. PubMed PMC

Helmlinger G., Berk B.C., Nerem R.M. Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ. Am. J. Physiol. 1995;269:C367–C375. PubMed

Silacci P., Formentin K., Hayoz D. Unidirectional and oscillatory shear stress differentially modulate NOSIII gene expression. Nitric Oxide Biol. Chem. 2000;4:47–56. PubMed

Hosoya T., Maruyama A., Yamamoto M. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J. Biol. Chem. 2005;280:27244–27250. PubMed

Guo D., Chien S., Shyy J.Y.J. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ. Res. 2007;100:564–571. PubMed

Pfenniger A., Wong C., Kwak B.R. Shear stress modulates the expression of the atheroprotective protein Cx37 in endothelial cells. J. Mol. Cell. Cardiol. 2012;53:299–309. PubMed

Laughlin M.H., Newcomer S.C., Bender S.B. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J. Appl. Physiol. 2008;104:588–600. PubMed PMC

White C.R., Frangos J.A. The shear stress of it all: the cell membrane and mechanochemical transduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007;362:1459–1467. PubMed PMC

Du D., Furukawa K., Ushida T. Oscillatory perfusion seeding and culturing of osteoblast-like cells on porous β-tricalcium phosphate scaffolds. J. Biomed. Mater. Res. A. 2008;86:796–803. PubMed

Lee D.-Y., Li Y.-S.J., Chien S. Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by αvβ3 and β1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway. J. Biol. Chem. 2010;285:30–42. PubMed PMC

You J., Reilly G.C., Jacobs C.R. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 2001;276:13365–13371. PubMed

Wu C.C., Li Y.S., Chien S. Roles of MAP kinases in the regulation of bone matrix gene expressions in human osteoblasts by oscillatory fluid flow. J. Cell. Biochem. 2006;98:632–641. PubMed

Case N., Sen B., Rubin J. Steady and oscillatory fluid flows produce a similar osteogenic phenotype. Calcif. Tissue Int. 2011;88:189–197. PubMed PMC

Lu X.L., Huo B., Guo X.E. Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone. 2012;51:466–473. PubMed PMC

Du D., Furukawa K.S., Ushida T. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol. Bioeng. 2009;102:1670–1678. PubMed

Alvarez-Barreto J.F., Sikavitsas V.I. Improved mesenchymal stem cell seeding on RGD-modified poly(L-lactic acid) scaffolds using flow perfusion. Macromol. Biosci. 2007;7:579–588. PubMed

Jaasma M.J., O’Brien F.J. Mechanical stimulation of osteoblasts using steady and dynamic fluid flow. Tissue Eng. Part A. 2008;14:1213–1223. PubMed

Qin K.-R., Xiang C., Cao L.-L. Dynamic modeling for flow-activated chloride-selective membrane current in vascular endothelial cells. Biomech. Model. Mechanobiol. 2011;10:743–754. PubMed

John K., Barakat A.I. Modulation of ATP/ADP concentration at the endothelial surface by shear stress: effect of flow-induced ATP release. Ann. Biomed. Eng. 2001;29:740–751. PubMed

Barakat A.I. A model for shear stress-induced deformation of a flow sensor on the surface of vascular endothelial cells. J. Theor. Biol. 2001;210:221–236. PubMed

Mazzag B.M., Tamaresis J.S., Barakat A.I. A model for shear stress sensing and transmission in vascular endothelial cells. Biophys. J. 2003;84:4087–4101. PubMed PMC

Přibyl M., Muratov C.B., Shvartsman S.Y. Long-range signal transmission in autocrine relays. Biophys. J. 2003;84:883–896. PubMed PMC

Nebyla M., Přibyl M., Schreiber I. Effects of convective transport on chemical signal propagation in epithelia. Biophys. J. 2012;102:990–1000. PubMed PMC

Edwards D.R., Handsley M.M., Pennington C.J. The ADAM metalloproteinases. Mol. Aspects Med. 2008;29:258–289. PubMed PMC

Ferrell J.E., Jr., Machleder E.M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998;280:895–898. PubMed

Přibyl M., Muratov C.B., Shvartsman S.Y. Discrete models of autocrine cell communication in epithelial layers. Biophys. J. 2003;84:3624–3635. PubMed PMC

Shvartsman S.Y., Wiley H.S., Lauffenburger D.A. Spatial range of autocrine signaling: modeling and computational analysis. Biophys. J. 2001;81:1854–1867. PubMed PMC

Deen W.M. Oxford University Press; New York: 1998. Analysis of Transport Phenomena.

Doedel E.J., Oldeman B.E. Concordia University; Montreal, Canada: 2009. AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations.

Hsiai T.K., Cho S.K., Ho C.M. Micro sensors: linking real-time oscillatory shear stress with vascular inflammatory responses. Ann. Biomed. Eng. 2004;32:189–201. PubMed

Ali F., Zakkar M., Mason J.C. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J. Biol. Chem. 2009;284:18882–18892. PubMed PMC

Lum R.M., Wiley L.M., Barakat A.I. Influence of different forms of fluid shear stress on vascular endothelial TGF-β1 mRNA expression. Int. J. Mol. Med. 2000;5:635–641. PubMed

Varma A., Morbidelli M. Oxford University Press; New York: 1997. Mathematical Methods in Chemical Engineering.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...