Oscillatory flow accelerates autocrine signaling due to nonlinear effect of convection on receptor-related actions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23931329
PubMed Central
PMC3736679
DOI
10.1016/j.bpj.2013.06.026
PII: S0006-3495(13)00705-4
Knihovny.cz E-zdroje
- MeSH
- autokrinní signalizace * MeSH
- biologické modely * MeSH
- hydrodynamika * MeSH
- konvekce * MeSH
- lidé MeSH
- nelineární dynamika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We study effects of oscillatory convective flow in extracellular space on the velocity of chemical signal propagation having a form of a front wave above a cellular layer. We found that the time-averaged propagation velocity under oscillatory flow for a particular Péclet number amplitude is slower than the velocity under steady laminar flow regime for the same value of the Péclet number, but significantly faster than under no-flow conditions. We derive asymptotic values of the propagation velocity and asymptotic characteristics of the corresponding concentration fronts in high- and low-frequency regimes and show that the reason for the observed velocity increase under the oscillatory flow stems from a nonlinear dependence of the propagation velocity on the Péclet number, particularly from the convex character of the dependence. Our findings suggest that the specific responses of cellular cultures to different flow conditions in the extracellular space (for example, expression of atherosclerosis protective genes under steady laminar flow but not under oscillatory flow) is a consequence of a nonlinear coupling between the extracellular transport and complex intracellular reaction cascades forming a positive feedback loop of the autocrine signaling. This mechanism can operate independently of, or in conjunction with, a direct stress-sensing due to mechanotransduction.
Zobrazit více v PubMed
Cartwright J.H.E., Piro O., Tuval I. Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc. Natl. Acad. Sci. USA. 2004;101:7234–7239. PubMed PMC
Ng C.P., Helm C.L.E., Swartz M.A. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 2004;68:258–264. PubMed
Chang S.F., Chang C.A., Chiu J.J. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc. Natl. Acad. Sci. USA. 2008;105:3927–3932. PubMed PMC
Polacheck W.J., Charest J.L., Kamm R.D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. USA. 2011;108:11115–11120. PubMed PMC
Shi Z.-D., Ji X.-Y., Tarbell J.M. Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H1225–H1234. PubMed PMC
Bruyère F., Noël A. Lymphangiogenesis: in vitro and in vivo models. FASEB J. 2010;24:8–21. PubMed
Tomei A.A., Siegert S., Swartz M.A. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 2009;183:4273–4283. PubMed
Fleury M.E., Boardman K.C., Swartz M.A. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 2006;91:113–121. PubMed PMC
Pedersen J.A., Swartz M.A. Mechanobiology in the third dimension. Ann. Biomed. Eng. 2005;33:1469–1490. PubMed
Helm C.L.E., Fleury M.E., Swartz M.A. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA. 2005;102:15779–15784. PubMed PMC
Hernández V.R., Genové E., Semino C.E. Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis. Tissue Eng. Part A. 2009;15:175–185. PubMed PMC
Shi Z.-D., Tarbell J.M. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 2011;39:1608–1619. PubMed PMC
Semino C.E., Kamm R.D., Lauffenburger D.A. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp. Cell Res. 2006;312:289–298. PubMed
Rutkowski J.M., Swartz M.A. A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol. 2007;17:44–50. PubMed
Shamloo A., Ma N., Heilshorn S.C. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip. 2008;8:1292–1299. PubMed
Song J.W., Munn L.L. Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. USA. 2011;108:15342–15347. PubMed PMC
Barakat A., Lieu D. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem. Biophys. 2003;38:323–343. PubMed
Thoumine O., Nerem R.M., Girard P.R. Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells. In Vitro Cell. Dev. Biol. Anim. 1995;31:45–54. PubMed
De Keulenaer G.W., Chappell D.C., Griendling K.K. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ. Res. 1998;82:1094–1101. PubMed
Magid R., Murphy T.J., Galis Z.S. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress. Role of c-Myc. J. Biol. Chem. 2003;278:32994–32999. PubMed
Chen X.L., Grey J.Y., Kunsch C. Sphingosine kinase-1 mediates TNF-α-induced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow. Am. J. Physiol. Heart Circ. Physiol. 2004;287:H1452–H1458. PubMed
Hahn C., Orr A.W., Schwartz M.A. The subendothelial extracellular matrix modulates JNK activation by flow. Circ. Res. 2009;104:995–1003. PubMed PMC
Helmlinger G., Berk B.C., Nerem R.M. Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ. Am. J. Physiol. 1995;269:C367–C375. PubMed
Silacci P., Formentin K., Hayoz D. Unidirectional and oscillatory shear stress differentially modulate NOSIII gene expression. Nitric Oxide Biol. Chem. 2000;4:47–56. PubMed
Hosoya T., Maruyama A., Yamamoto M. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J. Biol. Chem. 2005;280:27244–27250. PubMed
Guo D., Chien S., Shyy J.Y.J. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ. Res. 2007;100:564–571. PubMed
Pfenniger A., Wong C., Kwak B.R. Shear stress modulates the expression of the atheroprotective protein Cx37 in endothelial cells. J. Mol. Cell. Cardiol. 2012;53:299–309. PubMed
Laughlin M.H., Newcomer S.C., Bender S.B. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J. Appl. Physiol. 2008;104:588–600. PubMed PMC
White C.R., Frangos J.A. The shear stress of it all: the cell membrane and mechanochemical transduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007;362:1459–1467. PubMed PMC
Du D., Furukawa K., Ushida T. Oscillatory perfusion seeding and culturing of osteoblast-like cells on porous β-tricalcium phosphate scaffolds. J. Biomed. Mater. Res. A. 2008;86:796–803. PubMed
Lee D.-Y., Li Y.-S.J., Chien S. Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by αvβ3 and β1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway. J. Biol. Chem. 2010;285:30–42. PubMed PMC
You J., Reilly G.C., Jacobs C.R. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 2001;276:13365–13371. PubMed
Wu C.C., Li Y.S., Chien S. Roles of MAP kinases in the regulation of bone matrix gene expressions in human osteoblasts by oscillatory fluid flow. J. Cell. Biochem. 2006;98:632–641. PubMed
Case N., Sen B., Rubin J. Steady and oscillatory fluid flows produce a similar osteogenic phenotype. Calcif. Tissue Int. 2011;88:189–197. PubMed PMC
Lu X.L., Huo B., Guo X.E. Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone. 2012;51:466–473. PubMed PMC
Du D., Furukawa K.S., Ushida T. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol. Bioeng. 2009;102:1670–1678. PubMed
Alvarez-Barreto J.F., Sikavitsas V.I. Improved mesenchymal stem cell seeding on RGD-modified poly(L-lactic acid) scaffolds using flow perfusion. Macromol. Biosci. 2007;7:579–588. PubMed
Jaasma M.J., O’Brien F.J. Mechanical stimulation of osteoblasts using steady and dynamic fluid flow. Tissue Eng. Part A. 2008;14:1213–1223. PubMed
Qin K.-R., Xiang C., Cao L.-L. Dynamic modeling for flow-activated chloride-selective membrane current in vascular endothelial cells. Biomech. Model. Mechanobiol. 2011;10:743–754. PubMed
John K., Barakat A.I. Modulation of ATP/ADP concentration at the endothelial surface by shear stress: effect of flow-induced ATP release. Ann. Biomed. Eng. 2001;29:740–751. PubMed
Barakat A.I. A model for shear stress-induced deformation of a flow sensor on the surface of vascular endothelial cells. J. Theor. Biol. 2001;210:221–236. PubMed
Mazzag B.M., Tamaresis J.S., Barakat A.I. A model for shear stress sensing and transmission in vascular endothelial cells. Biophys. J. 2003;84:4087–4101. PubMed PMC
Přibyl M., Muratov C.B., Shvartsman S.Y. Long-range signal transmission in autocrine relays. Biophys. J. 2003;84:883–896. PubMed PMC
Nebyla M., Přibyl M., Schreiber I. Effects of convective transport on chemical signal propagation in epithelia. Biophys. J. 2012;102:990–1000. PubMed PMC
Edwards D.R., Handsley M.M., Pennington C.J. The ADAM metalloproteinases. Mol. Aspects Med. 2008;29:258–289. PubMed PMC
Ferrell J.E., Jr., Machleder E.M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998;280:895–898. PubMed
Přibyl M., Muratov C.B., Shvartsman S.Y. Discrete models of autocrine cell communication in epithelial layers. Biophys. J. 2003;84:3624–3635. PubMed PMC
Shvartsman S.Y., Wiley H.S., Lauffenburger D.A. Spatial range of autocrine signaling: modeling and computational analysis. Biophys. J. 2001;81:1854–1867. PubMed PMC
Deen W.M. Oxford University Press; New York: 1998. Analysis of Transport Phenomena.
Doedel E.J., Oldeman B.E. Concordia University; Montreal, Canada: 2009. AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations.
Hsiai T.K., Cho S.K., Ho C.M. Micro sensors: linking real-time oscillatory shear stress with vascular inflammatory responses. Ann. Biomed. Eng. 2004;32:189–201. PubMed
Ali F., Zakkar M., Mason J.C. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J. Biol. Chem. 2009;284:18882–18892. PubMed PMC
Lum R.M., Wiley L.M., Barakat A.I. Influence of different forms of fluid shear stress on vascular endothelial TGF-β1 mRNA expression. Int. J. Mol. Med. 2000;5:635–641. PubMed
Varma A., Morbidelli M. Oxford University Press; New York: 1997. Mathematical Methods in Chemical Engineering.