Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties

. 2020 Nov 16 ; 11 (1) : 5806. [epub] 20201116

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33199747
Odkazy

PubMed 33199747
PubMed Central PMC7669899
DOI 10.1038/s41467-020-19677-x
PII: 10.1038/s41467-020-19677-x
Knihovny.cz E-zdroje

It has been a challenging topic and perpetual task to design and synthesize covalent macrocycles with characteristic self-assembling behaviors and excellent host-guest properties in supramolecular chemistry. Herein, we present a family of macrocyclic diphenylamine[n]arenes (DPA[n]s, n = 3-7) consisting of methyldiphenylamine units through a facile one-pot synthesis strategy. Unlike many other reported macrocyclic arenes, the resultant non-planar DPA[n]s feature intrinsic π-π stacking interactions, interesting self-assembling behaviors and ethene/ethyne capture properties. Specifically, strong multiple intermolecular edge-to-face aromatic interactions in DPA[3] have been systematically investigated both in solid and solution states. The intriguing findings on the intermolecular edge-to-face stacking interaction mode in the macrocycle would further highlight the importance of noncovalent π-π interaction in supramolecular self-assembly. This study will also shed light on the macrocyclic and supramolecular chemistry and, we expect, will provide a direction for design and synthesis of covalent macrocycles in this area.

Zobrazit více v PubMed

Cram DJ. The design of molecular hosts, guests, and their complexes (Nobel Lecture) Angew. Chem. Int. Ed. Engl. 1988;27:1009–1020. doi: 10.1002/anie.198810093. PubMed DOI

Lehn J-M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture) Angew. Chem. Int. Ed. Engl. 1988;27:89–112. doi: 10.1002/anie.198800891. DOI

Stoddart JF. Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (Nobel Lecture) Angew. Chem. Int. Ed. 2017;56:11094–11125. doi: 10.1002/anie.201703216. PubMed DOI

Sauvage J-P. From chemical topology to molecular machines (Nobel Lecture) Angew. Chem. Int. Ed. 2017;56:11080–11093. doi: 10.1002/anie.201702992. PubMed DOI

Rebek J., Jr. Hydrogen-Bonded Capsules: Molecular Behavior In Small Spaces. Singapore: World Scientific Publishing; 2015.

Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 2008;130:17646–17647. doi: 10.1021/ja807126u. PubMed DOI PMC

Lee S, Chen C-H, Flood AH. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 2013;5:704–710. doi: 10.1038/nchem.1668. PubMed DOI

Ke H, et al. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nat. Chem. 2019;11:470–477. doi: 10.1038/s41557-019-0235-8. PubMed DOI

Zhang G-W, et al. Triptycene-based chiral macrocyclic hosts for higly enan-tioselective recognition of chiral guests containing a trimethylamino group. Angew. Chem. Int. Ed. 2016;55:5304–5308. doi: 10.1002/anie.201600911. PubMed DOI

Ryan STJ, et al. Dynamic and responsive host in action: light-controlled molecular encapsulation. Angew. Chem. Int. Ed. 2016;55:16096–16100. doi: 10.1002/anie.201607693. PubMed DOI PMC

Bo GD, Dolphijn G, McTernan CT, Leigh DA. [2]Rotaxane formation by transition state stabilization. J. Am. Chem. Soc. 2017;139:8455–8457. doi: 10.1021/jacs.7b05640. PubMed DOI

Wu X, et al. Tetraurea macrocycles: aggregation-driven binding of chloride in aqueous solutions. Chem. 2019;5:1210–1222. doi: 10.1016/j.chempr.2019.02.023. DOI

He Q, et al. Selective solid-liquid and liquid-liquid extraction of lithium chloride using strapped calix[4]pyrroles. Angew. Chem. Int. Ed. 2018;57:11924–11928. doi: 10.1002/anie.201805127. PubMed DOI

Wang W, et al. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches. Proc. Natl Acad. Sci. USA. 2015;112:5597–5601. doi: 10.1073/pnas.1500489112. PubMed DOI PMC

Wang XQ, et al. Dual stimuli-responsive rotaxane-branched dendrimers with reversible dimension modulation. Nat. Commun. 2018;9:3190. doi: 10.1038/s41467-018-05670-y. PubMed DOI PMC

Zhang C-W, et al. Construction of supramolecular polymer gels cross-linked by two types of discrete well-defined metallacycles through self-sorting. Acta Polym. Sin. 2017;1:71–79.

Jiang B, et al. Construction of π-surface-metalated pillar[5]arenes which bind anions via anion-π interactions. Angew. Chem. Int. Ed. 2017;56:14438–14442. doi: 10.1002/anie.201707209. PubMed DOI

Li B, et al. Terphen[n]arenes and quaterphen[n]arenes (n=3-6): one-pot synthesis, self-assembly into supramolecular gels, and iodine capture. Angew. Chem. Int. Ed. 2019;58:3885–3889. doi: 10.1002/anie.201813972. PubMed DOI

Song N, et al. Molecular-scale porous materials based on pillar[n]arenes. Chem. 2018;4:2029–2053. doi: 10.1016/j.chempr.2018.05.015. DOI

Jie K, Zhou Y, Li E, Huang F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 2018;51:2064–2072. doi: 10.1021/acs.accounts.8b00255. PubMed DOI

Shimizu LS, Salpage SR, Korous AA. Functional materials from self-assembled bis-urea macrocycles. Acc. Chem. Res. 2014;47:2116–2127. doi: 10.1021/ar500106f. PubMed DOI

Ghadiri MR, et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature. 1993;366:324–327. doi: 10.1038/366324a0. PubMed DOI

Gauthier D, Baillargeon P, Drouin M, Dory YL. Self-assembly of cyclic peptides into nanotubes and then into highly anisotropic crystalline materials. Angew. Chem. Int. Ed. 2001;40:4635–4638. doi: 10.1002/1521-3773(20011217)40:24<4635::AID-ANIE4635>3.0.CO;2-D. PubMed DOI

Scanlon S, Aggeli A. Self-assembling peptide nanotubes. Nano Today. 2008;3:22–30. doi: 10.1016/S1748-0132(08)70041-0. DOI

Hamley IW. Peptide nanotubes. Angew. Chem. Int. Ed. 2014;53:6866–6881. doi: 10.1002/anie.201310006. PubMed DOI

Moore JS. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res. 1997;30:402–413. doi: 10.1021/ar950232g. DOI

Shetty AS, Zhang J, Moore JS. Aromatic π-stacking in solution as revealed through the aggregation of phenylacetylene macrocycles. J. Am. Chem. Soc. 1996;118:1019–1027. doi: 10.1021/ja9528893. DOI

Lahiri S, Thompson JL, Moore JS. Solvophobically driven π-stacking of phenylene ethynylene macrocycles and oligomers. J. Am. Chem. Soc. 2000;122:11315–11319. doi: 10.1021/ja002129e. DOI

Frischmann PD, Guieu S, Tabeshi R, MacLachlan MJ. Columnar organization of head-to-tail self-assembled Pt4 rings. J. Am. Chem. Soc. 2010;132:7668–7675. doi: 10.1021/ja910886g. PubMed DOI

Li Y, et al. Giant, hollow 2D metalloarchitecture: stepwise self-assembly of a hexagonal supramolecular nut. J. Am. Chem. Soc. 2016;138:10041–10046. doi: 10.1021/jacs.6b06021. PubMed DOI

Shi B, et al. Spontaneous formation of a cross-linked supramolecular polymer both in the solid state and in solution, driven by platinum(II) metallacycle-based host-guest interactions. J. Am. Chem. Soc. 2019;141:6494–6498. doi: 10.1021/jacs.9b02281. PubMed DOI PMC

Yuan L, et al. Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers. J. Am. Chem. Soc. 2004;126:11120–11121. doi: 10.1021/ja0474547. PubMed DOI

Yang Y, et al. Strong aggregation and directional assembly of aromatic oligoamide macrocycles. J. Am. Chem. Soc. 2011;133:18590–18593. doi: 10.1021/ja208548b. PubMed DOI

Li X, et al. Liquid-crystalline mesogens based on cyclo[6]aramides: distinctive phase transitions in response to macrocyclic host-guest interactions. Angew. Chem. Int. Ed. 2015;54:11147–11152. doi: 10.1002/anie.201505278. PubMed DOI

Dawn S, et al. Self-assembled phenylethynylene bis-urea macrocycles facilitate the selective photodimerization of coumarin. J. Am. Chem. Soc. 2011;133:7025–7032. doi: 10.1021/ja110779h. PubMed DOI

Si W, Li Z-T, Hou J-L. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. Angew. Chem. Int. Ed. 2014;53:4578–4581. doi: 10.1002/anie.201311249. PubMed DOI

Ogoshi T, Takashima S, Yamagishi T-A. Photocontrolled reversible guest uptake, storage, and release by azobenzene-modified microporous multilayer films of pillar[5]arenes. J. Am. Chem. Soc. 2018;140:1544–1548. doi: 10.1021/jacs.7b12893. PubMed DOI

Ogoshi T, Yamagishi T-a, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem. Rev. 2016;116:7937–8002. doi: 10.1021/acs.chemrev.5b00765. PubMed DOI

Wu J-R, Yang Y-W. New opportunities in synthetic macrocyclic arenes. Chem. Commun. 2019;55:1533–1543. doi: 10.1039/C8CC09374A. PubMed DOI

Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Ed. 2013;52:9900–9930. doi: 10.1002/anie.201210238. PubMed DOI

Xue M, et al. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012;45:1294–1308. doi: 10.1021/ar2003418. PubMed DOI

Peng C, Schlegel HB. Combining synchronous transit and quasi-newton methods to find transition states. Isr. J. Chem. 1993;33:449–454. doi: 10.1002/ijch.199300051. DOI

Peng C, Ayala PY, Schlegel HB, Frisch MJ. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem. 1996;17:49–56. doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0. DOI

Omachi H, Segawa Y, Itami K. Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 2011;13:2480–2483. doi: 10.1021/ol200730m. PubMed DOI

Nimse SB, Kim T. Biological applications of functionalized calixarenes. Chem. Soc. Rev. 2013;42:366–386. doi: 10.1039/C2CS35233H. PubMed DOI

Kim SK, Sessler JL. Calix[4]pyrrole-based ion pair receptors. Acc. Chem. Res. 2014;47:2525–2536. doi: 10.1021/ar500157a. PubMed DOI

Kumari H, Deakyne CA, Atwood JL. Solution structures of nanoassemblies based on pyrogallol[4]arenes. Acc. Chem. Res. 2014;47:3080–3088. doi: 10.1021/ar500222w. PubMed DOI

Pochorovski I, Diederich F. Development of redox-switchable resorcin[4]arene cavitands. Acc. Chem. Res. 2014;47:2096–2105. doi: 10.1021/ar500104k. PubMed DOI

Majewski MA, Stępień M. Bowls, hoops, and saddles: synthetic approaches to curved aromatic molecules. Angew. Chem. Int. Ed. 2019;58:86–116. doi: 10.1002/anie.201807004. PubMed DOI

Šponer J, Riley KE, Hobza P. Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 2008;10:2595–2610. doi: 10.1039/b719370j. PubMed DOI

Wu J, et al. Controlled self-assembly of hexa-peri-hexabenzocoronenes in solution. J. Am. Chem. Soc. 2004;126:11311–11321. doi: 10.1021/ja047577r. PubMed DOI

Gazit E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J. 2002;16:77–83. doi: 10.1096/fj.01-0442hyp. PubMed DOI

Martinez CR, Iverson BL. Rethinking the term “π-stacking”. Chem. Sci. 2012;3:2191–2201. doi: 10.1039/c2sc20045g. DOI

Jennings WB, Farrell BM, Malone FJ. Attractive intra-molecular edge-to-face aromatic interactions in flexible organic molecules. Acc. Chem. Res. 2001;34:885–894. doi: 10.1021/ar0100475. PubMed DOI

Martin RB. Comparisons of indefinite self-association models. Chem. Rev. 1996;96:3043–3064. doi: 10.1021/cr960037v. PubMed DOI

Chen Z, Lohr A, Saha-Moller CR, Wurthner F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 2009;38:564–584. doi: 10.1039/B809359H. PubMed DOI

Matsuno T, Kogashi K, Sato S, Isobe H. Enhanced yet inverted effects of π-extension in self-assembly of curved π-systems with helicity. Org. Lett. 2017;19:6456–6459. doi: 10.1021/acs.orglett.7b03534. PubMed DOI

Liao P-Q, Zhang W-X, Zhang J-P, Chen X-M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 2015;6:8697. doi: 10.1038/ncomms9697. PubMed DOI PMC

Li L, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science. 2018;362:443–446. doi: 10.1126/science.aat0586. PubMed DOI

Shibasaki K, Fujii A, Mikami N, Tsuzuki S. Magnitude and nature of interactions in benzene-X (X = ethylene and acetylene) in the gas phase: significantly different CH/π interaction of acetylene as compared with those of ethylene and methane. J. Phys. Chem. A. 2007;111:753–758. doi: 10.1021/jp065076h. PubMed DOI

Tekin A, Jansen G. How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-π and π-π interactions? A comparison to supermolecular calculations for the acetylene-benzene dimer. Phys. Chem. Chem. Phys. 2007;9:1680–1687. doi: 10.1039/B618997K. PubMed DOI

Majumder M, Mishra BK, Sathyamurthy N. CH-π and π-π interaction in benzene-acetylene clusters. Chem. Phys. Lett. 2013;557:59–65. doi: 10.1016/j.cplett.2012.12.027. DOI

Thallapally PK, et al. Acetylene absorption and binding in a nonporous crystal lattice. Angew. Chem. Int. Ed. 2006;45:6506–6509. doi: 10.1002/anie.200601391. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...