• This record comes from PubMed

Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties

. 2020 Nov 16 ; 11 (1) : 5806. [epub] 20201116

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 33199747
PubMed Central PMC7669899
DOI 10.1038/s41467-020-19677-x
PII: 10.1038/s41467-020-19677-x
Knihovny.cz E-resources

It has been a challenging topic and perpetual task to design and synthesize covalent macrocycles with characteristic self-assembling behaviors and excellent host-guest properties in supramolecular chemistry. Herein, we present a family of macrocyclic diphenylamine[n]arenes (DPA[n]s, n = 3-7) consisting of methyldiphenylamine units through a facile one-pot synthesis strategy. Unlike many other reported macrocyclic arenes, the resultant non-planar DPA[n]s feature intrinsic π-π stacking interactions, interesting self-assembling behaviors and ethene/ethyne capture properties. Specifically, strong multiple intermolecular edge-to-face aromatic interactions in DPA[3] have been systematically investigated both in solid and solution states. The intriguing findings on the intermolecular edge-to-face stacking interaction mode in the macrocycle would further highlight the importance of noncovalent π-π interaction in supramolecular self-assembly. This study will also shed light on the macrocyclic and supramolecular chemistry and, we expect, will provide a direction for design and synthesis of covalent macrocycles in this area.

See more in PubMed

Cram DJ. The design of molecular hosts, guests, and their complexes (Nobel Lecture) Angew. Chem. Int. Ed. Engl. 1988;27:1009–1020. doi: 10.1002/anie.198810093. PubMed DOI

Lehn J-M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture) Angew. Chem. Int. Ed. Engl. 1988;27:89–112. doi: 10.1002/anie.198800891. DOI

Stoddart JF. Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (Nobel Lecture) Angew. Chem. Int. Ed. 2017;56:11094–11125. doi: 10.1002/anie.201703216. PubMed DOI

Sauvage J-P. From chemical topology to molecular machines (Nobel Lecture) Angew. Chem. Int. Ed. 2017;56:11080–11093. doi: 10.1002/anie.201702992. PubMed DOI

Rebek J., Jr. Hydrogen-Bonded Capsules: Molecular Behavior In Small Spaces. Singapore: World Scientific Publishing; 2015.

Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 2008;130:17646–17647. doi: 10.1021/ja807126u. PubMed DOI PMC

Lee S, Chen C-H, Flood AH. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 2013;5:704–710. doi: 10.1038/nchem.1668. PubMed DOI

Ke H, et al. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nat. Chem. 2019;11:470–477. doi: 10.1038/s41557-019-0235-8. PubMed DOI

Zhang G-W, et al. Triptycene-based chiral macrocyclic hosts for higly enan-tioselective recognition of chiral guests containing a trimethylamino group. Angew. Chem. Int. Ed. 2016;55:5304–5308. doi: 10.1002/anie.201600911. PubMed DOI

Ryan STJ, et al. Dynamic and responsive host in action: light-controlled molecular encapsulation. Angew. Chem. Int. Ed. 2016;55:16096–16100. doi: 10.1002/anie.201607693. PubMed DOI PMC

Bo GD, Dolphijn G, McTernan CT, Leigh DA. [2]Rotaxane formation by transition state stabilization. J. Am. Chem. Soc. 2017;139:8455–8457. doi: 10.1021/jacs.7b05640. PubMed DOI

Wu X, et al. Tetraurea macrocycles: aggregation-driven binding of chloride in aqueous solutions. Chem. 2019;5:1210–1222. doi: 10.1016/j.chempr.2019.02.023. DOI

He Q, et al. Selective solid-liquid and liquid-liquid extraction of lithium chloride using strapped calix[4]pyrroles. Angew. Chem. Int. Ed. 2018;57:11924–11928. doi: 10.1002/anie.201805127. PubMed DOI

Wang W, et al. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches. Proc. Natl Acad. Sci. USA. 2015;112:5597–5601. doi: 10.1073/pnas.1500489112. PubMed DOI PMC

Wang XQ, et al. Dual stimuli-responsive rotaxane-branched dendrimers with reversible dimension modulation. Nat. Commun. 2018;9:3190. doi: 10.1038/s41467-018-05670-y. PubMed DOI PMC

Zhang C-W, et al. Construction of supramolecular polymer gels cross-linked by two types of discrete well-defined metallacycles through self-sorting. Acta Polym. Sin. 2017;1:71–79.

Jiang B, et al. Construction of π-surface-metalated pillar[5]arenes which bind anions via anion-π interactions. Angew. Chem. Int. Ed. 2017;56:14438–14442. doi: 10.1002/anie.201707209. PubMed DOI

Li B, et al. Terphen[n]arenes and quaterphen[n]arenes (n=3-6): one-pot synthesis, self-assembly into supramolecular gels, and iodine capture. Angew. Chem. Int. Ed. 2019;58:3885–3889. doi: 10.1002/anie.201813972. PubMed DOI

Song N, et al. Molecular-scale porous materials based on pillar[n]arenes. Chem. 2018;4:2029–2053. doi: 10.1016/j.chempr.2018.05.015. DOI

Jie K, Zhou Y, Li E, Huang F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 2018;51:2064–2072. doi: 10.1021/acs.accounts.8b00255. PubMed DOI

Shimizu LS, Salpage SR, Korous AA. Functional materials from self-assembled bis-urea macrocycles. Acc. Chem. Res. 2014;47:2116–2127. doi: 10.1021/ar500106f. PubMed DOI

Ghadiri MR, et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature. 1993;366:324–327. doi: 10.1038/366324a0. PubMed DOI

Gauthier D, Baillargeon P, Drouin M, Dory YL. Self-assembly of cyclic peptides into nanotubes and then into highly anisotropic crystalline materials. Angew. Chem. Int. Ed. 2001;40:4635–4638. doi: 10.1002/1521-3773(20011217)40:24<4635::AID-ANIE4635>3.0.CO;2-D. PubMed DOI

Scanlon S, Aggeli A. Self-assembling peptide nanotubes. Nano Today. 2008;3:22–30. doi: 10.1016/S1748-0132(08)70041-0. DOI

Hamley IW. Peptide nanotubes. Angew. Chem. Int. Ed. 2014;53:6866–6881. doi: 10.1002/anie.201310006. PubMed DOI

Moore JS. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res. 1997;30:402–413. doi: 10.1021/ar950232g. DOI

Shetty AS, Zhang J, Moore JS. Aromatic π-stacking in solution as revealed through the aggregation of phenylacetylene macrocycles. J. Am. Chem. Soc. 1996;118:1019–1027. doi: 10.1021/ja9528893. DOI

Lahiri S, Thompson JL, Moore JS. Solvophobically driven π-stacking of phenylene ethynylene macrocycles and oligomers. J. Am. Chem. Soc. 2000;122:11315–11319. doi: 10.1021/ja002129e. DOI

Frischmann PD, Guieu S, Tabeshi R, MacLachlan MJ. Columnar organization of head-to-tail self-assembled Pt4 rings. J. Am. Chem. Soc. 2010;132:7668–7675. doi: 10.1021/ja910886g. PubMed DOI

Li Y, et al. Giant, hollow 2D metalloarchitecture: stepwise self-assembly of a hexagonal supramolecular nut. J. Am. Chem. Soc. 2016;138:10041–10046. doi: 10.1021/jacs.6b06021. PubMed DOI

Shi B, et al. Spontaneous formation of a cross-linked supramolecular polymer both in the solid state and in solution, driven by platinum(II) metallacycle-based host-guest interactions. J. Am. Chem. Soc. 2019;141:6494–6498. doi: 10.1021/jacs.9b02281. PubMed DOI PMC

Yuan L, et al. Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers. J. Am. Chem. Soc. 2004;126:11120–11121. doi: 10.1021/ja0474547. PubMed DOI

Yang Y, et al. Strong aggregation and directional assembly of aromatic oligoamide macrocycles. J. Am. Chem. Soc. 2011;133:18590–18593. doi: 10.1021/ja208548b. PubMed DOI

Li X, et al. Liquid-crystalline mesogens based on cyclo[6]aramides: distinctive phase transitions in response to macrocyclic host-guest interactions. Angew. Chem. Int. Ed. 2015;54:11147–11152. doi: 10.1002/anie.201505278. PubMed DOI

Dawn S, et al. Self-assembled phenylethynylene bis-urea macrocycles facilitate the selective photodimerization of coumarin. J. Am. Chem. Soc. 2011;133:7025–7032. doi: 10.1021/ja110779h. PubMed DOI

Si W, Li Z-T, Hou J-L. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. Angew. Chem. Int. Ed. 2014;53:4578–4581. doi: 10.1002/anie.201311249. PubMed DOI

Ogoshi T, Takashima S, Yamagishi T-A. Photocontrolled reversible guest uptake, storage, and release by azobenzene-modified microporous multilayer films of pillar[5]arenes. J. Am. Chem. Soc. 2018;140:1544–1548. doi: 10.1021/jacs.7b12893. PubMed DOI

Ogoshi T, Yamagishi T-a, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem. Rev. 2016;116:7937–8002. doi: 10.1021/acs.chemrev.5b00765. PubMed DOI

Wu J-R, Yang Y-W. New opportunities in synthetic macrocyclic arenes. Chem. Commun. 2019;55:1533–1543. doi: 10.1039/C8CC09374A. PubMed DOI

Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Ed. 2013;52:9900–9930. doi: 10.1002/anie.201210238. PubMed DOI

Xue M, et al. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012;45:1294–1308. doi: 10.1021/ar2003418. PubMed DOI

Peng C, Schlegel HB. Combining synchronous transit and quasi-newton methods to find transition states. Isr. J. Chem. 1993;33:449–454. doi: 10.1002/ijch.199300051. DOI

Peng C, Ayala PY, Schlegel HB, Frisch MJ. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem. 1996;17:49–56. doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0. DOI

Omachi H, Segawa Y, Itami K. Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 2011;13:2480–2483. doi: 10.1021/ol200730m. PubMed DOI

Nimse SB, Kim T. Biological applications of functionalized calixarenes. Chem. Soc. Rev. 2013;42:366–386. doi: 10.1039/C2CS35233H. PubMed DOI

Kim SK, Sessler JL. Calix[4]pyrrole-based ion pair receptors. Acc. Chem. Res. 2014;47:2525–2536. doi: 10.1021/ar500157a. PubMed DOI

Kumari H, Deakyne CA, Atwood JL. Solution structures of nanoassemblies based on pyrogallol[4]arenes. Acc. Chem. Res. 2014;47:3080–3088. doi: 10.1021/ar500222w. PubMed DOI

Pochorovski I, Diederich F. Development of redox-switchable resorcin[4]arene cavitands. Acc. Chem. Res. 2014;47:2096–2105. doi: 10.1021/ar500104k. PubMed DOI

Majewski MA, Stępień M. Bowls, hoops, and saddles: synthetic approaches to curved aromatic molecules. Angew. Chem. Int. Ed. 2019;58:86–116. doi: 10.1002/anie.201807004. PubMed DOI

Šponer J, Riley KE, Hobza P. Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 2008;10:2595–2610. doi: 10.1039/b719370j. PubMed DOI

Wu J, et al. Controlled self-assembly of hexa-peri-hexabenzocoronenes in solution. J. Am. Chem. Soc. 2004;126:11311–11321. doi: 10.1021/ja047577r. PubMed DOI

Gazit E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J. 2002;16:77–83. doi: 10.1096/fj.01-0442hyp. PubMed DOI

Martinez CR, Iverson BL. Rethinking the term “π-stacking”. Chem. Sci. 2012;3:2191–2201. doi: 10.1039/c2sc20045g. DOI

Jennings WB, Farrell BM, Malone FJ. Attractive intra-molecular edge-to-face aromatic interactions in flexible organic molecules. Acc. Chem. Res. 2001;34:885–894. doi: 10.1021/ar0100475. PubMed DOI

Martin RB. Comparisons of indefinite self-association models. Chem. Rev. 1996;96:3043–3064. doi: 10.1021/cr960037v. PubMed DOI

Chen Z, Lohr A, Saha-Moller CR, Wurthner F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 2009;38:564–584. doi: 10.1039/B809359H. PubMed DOI

Matsuno T, Kogashi K, Sato S, Isobe H. Enhanced yet inverted effects of π-extension in self-assembly of curved π-systems with helicity. Org. Lett. 2017;19:6456–6459. doi: 10.1021/acs.orglett.7b03534. PubMed DOI

Liao P-Q, Zhang W-X, Zhang J-P, Chen X-M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 2015;6:8697. doi: 10.1038/ncomms9697. PubMed DOI PMC

Li L, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science. 2018;362:443–446. doi: 10.1126/science.aat0586. PubMed DOI

Shibasaki K, Fujii A, Mikami N, Tsuzuki S. Magnitude and nature of interactions in benzene-X (X = ethylene and acetylene) in the gas phase: significantly different CH/π interaction of acetylene as compared with those of ethylene and methane. J. Phys. Chem. A. 2007;111:753–758. doi: 10.1021/jp065076h. PubMed DOI

Tekin A, Jansen G. How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-π and π-π interactions? A comparison to supermolecular calculations for the acetylene-benzene dimer. Phys. Chem. Chem. Phys. 2007;9:1680–1687. doi: 10.1039/B618997K. PubMed DOI

Majumder M, Mishra BK, Sathyamurthy N. CH-π and π-π interaction in benzene-acetylene clusters. Chem. Phys. Lett. 2013;557:59–65. doi: 10.1016/j.cplett.2012.12.027. DOI

Thallapally PK, et al. Acetylene absorption and binding in a nonporous crystal lattice. Angew. Chem. Int. Ed. 2006;45:6506–6509. doi: 10.1002/anie.200601391. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...