Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
33199747
PubMed Central
PMC7669899
DOI
10.1038/s41467-020-19677-x
PII: 10.1038/s41467-020-19677-x
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
It has been a challenging topic and perpetual task to design and synthesize covalent macrocycles with characteristic self-assembling behaviors and excellent host-guest properties in supramolecular chemistry. Herein, we present a family of macrocyclic diphenylamine[n]arenes (DPA[n]s, n = 3-7) consisting of methyldiphenylamine units through a facile one-pot synthesis strategy. Unlike many other reported macrocyclic arenes, the resultant non-planar DPA[n]s feature intrinsic π-π stacking interactions, interesting self-assembling behaviors and ethene/ethyne capture properties. Specifically, strong multiple intermolecular edge-to-face aromatic interactions in DPA[3] have been systematically investigated both in solid and solution states. The intriguing findings on the intermolecular edge-to-face stacking interaction mode in the macrocycle would further highlight the importance of noncovalent π-π interaction in supramolecular self-assembly. This study will also shed light on the macrocyclic and supramolecular chemistry and, we expect, will provide a direction for design and synthesis of covalent macrocycles in this area.
See more in PubMed
Cram DJ. The design of molecular hosts, guests, and their complexes (Nobel Lecture) Angew. Chem. Int. Ed. Engl. 1988;27:1009–1020. doi: 10.1002/anie.198810093. PubMed DOI
Lehn J-M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture) Angew. Chem. Int. Ed. Engl. 1988;27:89–112. doi: 10.1002/anie.198800891. DOI
Stoddart JF. Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (Nobel Lecture) Angew. Chem. Int. Ed. 2017;56:11094–11125. doi: 10.1002/anie.201703216. PubMed DOI
Sauvage J-P. From chemical topology to molecular machines (Nobel Lecture) Angew. Chem. Int. Ed. 2017;56:11080–11093. doi: 10.1002/anie.201702992. PubMed DOI
Rebek J., Jr. Hydrogen-Bonded Capsules: Molecular Behavior In Small Spaces. Singapore: World Scientific Publishing; 2015.
Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 2008;130:17646–17647. doi: 10.1021/ja807126u. PubMed DOI PMC
Lee S, Chen C-H, Flood AH. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 2013;5:704–710. doi: 10.1038/nchem.1668. PubMed DOI
Ke H, et al. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nat. Chem. 2019;11:470–477. doi: 10.1038/s41557-019-0235-8. PubMed DOI
Zhang G-W, et al. Triptycene-based chiral macrocyclic hosts for higly enan-tioselective recognition of chiral guests containing a trimethylamino group. Angew. Chem. Int. Ed. 2016;55:5304–5308. doi: 10.1002/anie.201600911. PubMed DOI
Ryan STJ, et al. Dynamic and responsive host in action: light-controlled molecular encapsulation. Angew. Chem. Int. Ed. 2016;55:16096–16100. doi: 10.1002/anie.201607693. PubMed DOI PMC
Bo GD, Dolphijn G, McTernan CT, Leigh DA. [2]Rotaxane formation by transition state stabilization. J. Am. Chem. Soc. 2017;139:8455–8457. doi: 10.1021/jacs.7b05640. PubMed DOI
Wu X, et al. Tetraurea macrocycles: aggregation-driven binding of chloride in aqueous solutions. Chem. 2019;5:1210–1222. doi: 10.1016/j.chempr.2019.02.023. DOI
He Q, et al. Selective solid-liquid and liquid-liquid extraction of lithium chloride using strapped calix[4]pyrroles. Angew. Chem. Int. Ed. 2018;57:11924–11928. doi: 10.1002/anie.201805127. PubMed DOI
Wang W, et al. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches. Proc. Natl Acad. Sci. USA. 2015;112:5597–5601. doi: 10.1073/pnas.1500489112. PubMed DOI PMC
Wang XQ, et al. Dual stimuli-responsive rotaxane-branched dendrimers with reversible dimension modulation. Nat. Commun. 2018;9:3190. doi: 10.1038/s41467-018-05670-y. PubMed DOI PMC
Zhang C-W, et al. Construction of supramolecular polymer gels cross-linked by two types of discrete well-defined metallacycles through self-sorting. Acta Polym. Sin. 2017;1:71–79.
Jiang B, et al. Construction of π-surface-metalated pillar[5]arenes which bind anions via anion-π interactions. Angew. Chem. Int. Ed. 2017;56:14438–14442. doi: 10.1002/anie.201707209. PubMed DOI
Li B, et al. Terphen[n]arenes and quaterphen[n]arenes (n=3-6): one-pot synthesis, self-assembly into supramolecular gels, and iodine capture. Angew. Chem. Int. Ed. 2019;58:3885–3889. doi: 10.1002/anie.201813972. PubMed DOI
Song N, et al. Molecular-scale porous materials based on pillar[n]arenes. Chem. 2018;4:2029–2053. doi: 10.1016/j.chempr.2018.05.015. DOI
Jie K, Zhou Y, Li E, Huang F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 2018;51:2064–2072. doi: 10.1021/acs.accounts.8b00255. PubMed DOI
Shimizu LS, Salpage SR, Korous AA. Functional materials from self-assembled bis-urea macrocycles. Acc. Chem. Res. 2014;47:2116–2127. doi: 10.1021/ar500106f. PubMed DOI
Ghadiri MR, et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature. 1993;366:324–327. doi: 10.1038/366324a0. PubMed DOI
Gauthier D, Baillargeon P, Drouin M, Dory YL. Self-assembly of cyclic peptides into nanotubes and then into highly anisotropic crystalline materials. Angew. Chem. Int. Ed. 2001;40:4635–4638. doi: 10.1002/1521-3773(20011217)40:24<4635::AID-ANIE4635>3.0.CO;2-D. PubMed DOI
Scanlon S, Aggeli A. Self-assembling peptide nanotubes. Nano Today. 2008;3:22–30. doi: 10.1016/S1748-0132(08)70041-0. DOI
Hamley IW. Peptide nanotubes. Angew. Chem. Int. Ed. 2014;53:6866–6881. doi: 10.1002/anie.201310006. PubMed DOI
Moore JS. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res. 1997;30:402–413. doi: 10.1021/ar950232g. DOI
Shetty AS, Zhang J, Moore JS. Aromatic π-stacking in solution as revealed through the aggregation of phenylacetylene macrocycles. J. Am. Chem. Soc. 1996;118:1019–1027. doi: 10.1021/ja9528893. DOI
Lahiri S, Thompson JL, Moore JS. Solvophobically driven π-stacking of phenylene ethynylene macrocycles and oligomers. J. Am. Chem. Soc. 2000;122:11315–11319. doi: 10.1021/ja002129e. DOI
Frischmann PD, Guieu S, Tabeshi R, MacLachlan MJ. Columnar organization of head-to-tail self-assembled Pt4 rings. J. Am. Chem. Soc. 2010;132:7668–7675. doi: 10.1021/ja910886g. PubMed DOI
Li Y, et al. Giant, hollow 2D metalloarchitecture: stepwise self-assembly of a hexagonal supramolecular nut. J. Am. Chem. Soc. 2016;138:10041–10046. doi: 10.1021/jacs.6b06021. PubMed DOI
Shi B, et al. Spontaneous formation of a cross-linked supramolecular polymer both in the solid state and in solution, driven by platinum(II) metallacycle-based host-guest interactions. J. Am. Chem. Soc. 2019;141:6494–6498. doi: 10.1021/jacs.9b02281. PubMed DOI PMC
Yuan L, et al. Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers. J. Am. Chem. Soc. 2004;126:11120–11121. doi: 10.1021/ja0474547. PubMed DOI
Yang Y, et al. Strong aggregation and directional assembly of aromatic oligoamide macrocycles. J. Am. Chem. Soc. 2011;133:18590–18593. doi: 10.1021/ja208548b. PubMed DOI
Li X, et al. Liquid-crystalline mesogens based on cyclo[6]aramides: distinctive phase transitions in response to macrocyclic host-guest interactions. Angew. Chem. Int. Ed. 2015;54:11147–11152. doi: 10.1002/anie.201505278. PubMed DOI
Dawn S, et al. Self-assembled phenylethynylene bis-urea macrocycles facilitate the selective photodimerization of coumarin. J. Am. Chem. Soc. 2011;133:7025–7032. doi: 10.1021/ja110779h. PubMed DOI
Si W, Li Z-T, Hou J-L. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. Angew. Chem. Int. Ed. 2014;53:4578–4581. doi: 10.1002/anie.201311249. PubMed DOI
Ogoshi T, Takashima S, Yamagishi T-A. Photocontrolled reversible guest uptake, storage, and release by azobenzene-modified microporous multilayer films of pillar[5]arenes. J. Am. Chem. Soc. 2018;140:1544–1548. doi: 10.1021/jacs.7b12893. PubMed DOI
Ogoshi T, Yamagishi T-a, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem. Rev. 2016;116:7937–8002. doi: 10.1021/acs.chemrev.5b00765. PubMed DOI
Wu J-R, Yang Y-W. New opportunities in synthetic macrocyclic arenes. Chem. Commun. 2019;55:1533–1543. doi: 10.1039/C8CC09374A. PubMed DOI
Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Ed. 2013;52:9900–9930. doi: 10.1002/anie.201210238. PubMed DOI
Xue M, et al. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012;45:1294–1308. doi: 10.1021/ar2003418. PubMed DOI
Peng C, Schlegel HB. Combining synchronous transit and quasi-newton methods to find transition states. Isr. J. Chem. 1993;33:449–454. doi: 10.1002/ijch.199300051. DOI
Peng C, Ayala PY, Schlegel HB, Frisch MJ. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem. 1996;17:49–56. doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0. DOI
Omachi H, Segawa Y, Itami K. Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 2011;13:2480–2483. doi: 10.1021/ol200730m. PubMed DOI
Nimse SB, Kim T. Biological applications of functionalized calixarenes. Chem. Soc. Rev. 2013;42:366–386. doi: 10.1039/C2CS35233H. PubMed DOI
Kim SK, Sessler JL. Calix[4]pyrrole-based ion pair receptors. Acc. Chem. Res. 2014;47:2525–2536. doi: 10.1021/ar500157a. PubMed DOI
Kumari H, Deakyne CA, Atwood JL. Solution structures of nanoassemblies based on pyrogallol[4]arenes. Acc. Chem. Res. 2014;47:3080–3088. doi: 10.1021/ar500222w. PubMed DOI
Pochorovski I, Diederich F. Development of redox-switchable resorcin[4]arene cavitands. Acc. Chem. Res. 2014;47:2096–2105. doi: 10.1021/ar500104k. PubMed DOI
Majewski MA, Stępień M. Bowls, hoops, and saddles: synthetic approaches to curved aromatic molecules. Angew. Chem. Int. Ed. 2019;58:86–116. doi: 10.1002/anie.201807004. PubMed DOI
Šponer J, Riley KE, Hobza P. Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 2008;10:2595–2610. doi: 10.1039/b719370j. PubMed DOI
Wu J, et al. Controlled self-assembly of hexa-peri-hexabenzocoronenes in solution. J. Am. Chem. Soc. 2004;126:11311–11321. doi: 10.1021/ja047577r. PubMed DOI
Gazit E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J. 2002;16:77–83. doi: 10.1096/fj.01-0442hyp. PubMed DOI
Martinez CR, Iverson BL. Rethinking the term “π-stacking”. Chem. Sci. 2012;3:2191–2201. doi: 10.1039/c2sc20045g. DOI
Jennings WB, Farrell BM, Malone FJ. Attractive intra-molecular edge-to-face aromatic interactions in flexible organic molecules. Acc. Chem. Res. 2001;34:885–894. doi: 10.1021/ar0100475. PubMed DOI
Martin RB. Comparisons of indefinite self-association models. Chem. Rev. 1996;96:3043–3064. doi: 10.1021/cr960037v. PubMed DOI
Chen Z, Lohr A, Saha-Moller CR, Wurthner F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 2009;38:564–584. doi: 10.1039/B809359H. PubMed DOI
Matsuno T, Kogashi K, Sato S, Isobe H. Enhanced yet inverted effects of π-extension in self-assembly of curved π-systems with helicity. Org. Lett. 2017;19:6456–6459. doi: 10.1021/acs.orglett.7b03534. PubMed DOI
Liao P-Q, Zhang W-X, Zhang J-P, Chen X-M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 2015;6:8697. doi: 10.1038/ncomms9697. PubMed DOI PMC
Li L, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science. 2018;362:443–446. doi: 10.1126/science.aat0586. PubMed DOI
Shibasaki K, Fujii A, Mikami N, Tsuzuki S. Magnitude and nature of interactions in benzene-X (X = ethylene and acetylene) in the gas phase: significantly different CH/π interaction of acetylene as compared with those of ethylene and methane. J. Phys. Chem. A. 2007;111:753–758. doi: 10.1021/jp065076h. PubMed DOI
Tekin A, Jansen G. How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-π and π-π interactions? A comparison to supermolecular calculations for the acetylene-benzene dimer. Phys. Chem. Chem. Phys. 2007;9:1680–1687. doi: 10.1039/B618997K. PubMed DOI
Majumder M, Mishra BK, Sathyamurthy N. CH-π and π-π interaction in benzene-acetylene clusters. Chem. Phys. Lett. 2013;557:59–65. doi: 10.1016/j.cplett.2012.12.027. DOI
Thallapally PK, et al. Acetylene absorption and binding in a nonporous crystal lattice. Angew. Chem. Int. Ed. 2006;45:6506–6509. doi: 10.1002/anie.200601391. PubMed DOI