Effects of Austenitization Temperature and Pre-Deformation on CCT Diagrams of 23MnNiCrMo5-3 Steel
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/17_049/0008399
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33202789
PubMed Central
PMC7696398
DOI
10.3390/ma13225116
PII: ma13225116
Knihovny.cz E-resources
- Keywords
- CCT diagram, austenitization temperature, dynamic recrystallization, low-alloy steel, phase transformations, plastic deformation,
- Publication type
- Journal Article MeSH
The combined effect of deformation temperature and strain value on the continuous cooling transformation (CCT) diagram of low-alloy steel with 0.23% C, 1.17% Mn, 0.79% Ni, 0.44% Cr, and 0.22% Mo was studied. The deformation temperature (identical to the austenitization temperature) was in the range suitable for the wire rolling mill. The applied compressive deformation corresponded to the true strain values in an unusually wide range. Based on the dilatometric tests and metallographic analyses, a total of five different CCT diagrams were constructed. Pre-deformation corresponding to the true strain of 0.35 or even 1.0 had no clear effect on the austenite decomposition kinetics at the austenitization temperature of 880 °C. During the long-lasting cooling, recrystallization and probably coarsening of the new austenitic grains occurred, which almost eliminated the influence of pre-deformation on the temperatures of the diffusion-controlled phase transformations. Decreasing the deformation temperature to 830 °C led to the significant acceleration of the austenite → ferrite and austenite → pearlite transformations due to the applied strain of 1.0 only in the region of the cooling rate between 3 and 35 °C·s-1. The kinetics of the bainitic or martensitic transformation remained practically unaffected by the pre-deformation. The acceleration of the diffusion-controlled phase transformations resulted from the formation of an austenitic microstructure with a mean grain size of about 4 µm. As the analysis of the stress-strain curves showed, the grain refinement was carried out by dynamic and metadynamic recrystallization. At low cooling rates, the effect of plastic deformation on the kinetics of phase transformations was indistinct.
See more in PubMed
Opiela M., Zalecki W., Grajcar A. Influence of plastic deformation on CCT-diagrams of new-developed microalloyed steel. J. Achiev. Mater. Manuf. Eng. 2012;51:78–89.
Mun D.J., Shin E.J., Choi Y.W., Lee S.J., Koo Y.M. Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel. Mater. Sci. Eng. A. 2012;545:214–224. doi: 10.1016/j.msea.2012.03.047. DOI
Kawulok R., Schindler I., Sojka J., Kawulok P., Opěla P., Pindor L., Grycz E., Rusz S., Ševčák V. Effect of strain on transformation diagrams of 100Cr6 steel. Crystals. 2020;10:326. doi: 10.3390/cryst10040326. DOI
Rusz S., Schindler I., Kawulok P., Kawulok R., Opěla P., Kliber J., Solowski Z. Phase transformation and cooling curves of the mild steel influenced by previous hot rolling. Metalurgija. 2016;55:655–658.
Kawulok P., Schindler I., Mizera J., Kawulok R., Rusz S., Opěla P., Olszar M., Čmiel K.M. The influence of a cooling rate on the evolution of microstructure and hardness of the steel 27MnCrB5. Arch. Metall. Mater. 2018;63:907–914. doi: 10.24425/122421. DOI
Timoshenkov A., Warczok P., Albu M., Klarner J., Kozeschnik E., Gruber G., Sommitsch C. Influence of deformation on phase transformation and precipitation of steels for oil country tubular goods. Steel Res. Int. 2014;85:954–967. doi: 10.1002/srin.201300198. DOI
Schindler I., Kawulok R., Seillier Y., Kawulok P., Opěla P., Rusz S., Vodarek V., Turoň R. Continuous cooling transformation diagrams of HSLA steel for seamless tubes production. J. Min. Metall. Sect. B-Metall. 2019;55:413–426. doi: 10.2298/JMMB181217031S. DOI
Yogo Y., Kurato N., Iwata N. Investigation of hardness change for spot welded tailored blank in hot stamping using CCT and deformation-CCT diagrams. Metall. Mater. Trans. A. 2018;49:2293–2301. doi: 10.1007/s11661-018-4602-7. DOI
Chen Z., Nash P., Zhang Y. Correlation of cooling rate, microstructure and hardness of S34MnV steel. Metall. Mater. Trans. B. 2019;50:1718–1728. doi: 10.1007/s11663-019-01621-0. DOI
Kawulok R., Kawulok P., Schindler I., Opěla P., Rusz S., Ševčák V., Solowski Z. Study of the effect of deformation on transformation diagrams of two low-alloy manganese-chromium steels. Arch. Metall. Mater. 2018;63:1735–1741. doi: 10.24425/amm.2018.125099. DOI
Grajcar A., Kuziak R., Zalecki W. Designing of cooling conditions for Si-Al microalloyed TRIP steel on the basis of DCCT diagrams. J. Achiev. Mater. Manuf. Eng. 2011;45:115–124.
Liu S.K., Yang L., Zhu D.G., Zhang J. The influence of the alloying elements upon the transformation kinetics and morphologies of ferrite plates in alloy steels. Metall. Mater. Trans. A. 1994;25:1991–2000. doi: 10.1007/BF02649047. DOI
Calvo J., Jung I.H., Elwazri A.M., Bai D., Yue S. Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels. J. Mater. Sci. Eng. A. 2009;520:90–96. doi: 10.1016/j.msea.2009.05.027. DOI
Xie H.J., Wu X.C., Min Y.A. Influence of Chemical Composition on Phase Transformation Temperature and Thermal Expansion Coefficient of Hot Work Die Steel. J. Iron Steel Res. Int. 2008;15:56–61. doi: 10.1016/S1006-706X(08)60267-8. DOI
Javaheri V., Khodaie N., Kaijalainen A., Porter D. Effect of niobium and phase transformation temperature on the microstructure and texture of a novel 0.40% C thermomechanically processed steel. Mater. Charact. 2018;142:295–308. doi: 10.1016/j.matchar.2018.05.056. DOI
Cota A.B., Lacerda C.A.M., Oliveira F.L.G., Machado F.A., da Silva Araújo F.G. Effect of the austenitizing temperature on the kinetics of ferritic grain growth under continuous cooling of a Nb microalloyed steel. Scr. Mater. 2004;51:721–725. doi: 10.1016/j.scriptamat.2004.05.044. DOI
Białobrzeska B., Konat Ł., Jasiński R. The Influence of Austenite Grain Size on the Mechanical Properties of Low-Alloy Steel with Boron. Metals. 2017;7:26. doi: 10.3390/met7010026. DOI
Khlestov V.M., Konopleva E.V., McQueen H.J. Effects of deformation and heating temperature on the austenite transformation to pearlite in high alloy tool steels. Mater. Sci. Technol. 2002;18:54–60. doi: 10.1179/026708301125000212. DOI
Feng Y., Zhang D., Zhang M., Li J., Ning J. Effects of initial austenite grain size on microstructure evolution of medium carbon steel; Proceedings of the 2016 International Conference on Materials Science, Resource and Environmental Engineering; Xi’an, China. 10–11 December 2016; DOI
Andersson M., VanHumbeeck J., Ågren J. Effect of Recrystallization and Grain Size on the Martensitic Transformation in Fe-31%Mn-5%Si Alloy. Mater. Trans. 1996;37:1363–1370. doi: 10.2320/matertrans1989.37.1363. DOI
Aranda M.M., Kim B., Rementeria R., Capdevila C., García de Andres C. Effect of prior austenite grain size on pearlite transformation in a hypo-eutectoid Fe-C-Mn steel. Metall. Mater. Trans. A. 2014;45:1778–1786. doi: 10.1007/s11661-013-1996-0. DOI
Nürnberger F., Grydin O., Schaper M., Bach F.W., Koczurkiewicz B., Milenin A. Microstructure transformations in tempering steels during continuous cooling from hot forging temperatures. Steel Res. Int. 2010;81:224–233. doi: 10.1002/srin.200900132. DOI
Karmakar A., Mandal M., Mandal A., Basiruddin M.S., Mukherjee S., Chakrabarti D. Effect of starting microstructure on the grain refinement in cold-rolled low-carbon steel during annealing at two different heating rates. Metall. Mater. Trans. A. 2016;47:268–281. doi: 10.1007/s11661-015-3248-y. DOI
Han J., Silva A.K., Ponge D., Raabe D., Lee S.M., Lee Y.K., Hwang B. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater. 2017;122:199–206. doi: 10.1016/j.actamat.2016.09.048. DOI
Choo W.Y., Um K.K., Lee J.S., Seo D.H., Choi J.K. Enhancement of fine formation by strain induced dynamic transformation and mechanical properties of fine grained steel; Proceedings of the International Symposium on Ultrafine Grained Steels; Fukuoka, Japan. 20–22 September 2001; Tokyo, Japan: Iron and Steel Institute of Japan; 2001. pp. 2–9.
Beladi H., Kelly G.L., Shokouhi A., Hodgson P.D. The evolution of ultrafine ferrite formation through dynamic strain-induced transformation. Mater. Sci. Eng. A. 2004;371:343–352. doi: 10.1016/j.msea.2003.12.024. DOI
Ghosh C., Aranas C.J., Jonas J.J. Dynamic transformation of deformed austenite at temperatures above the Ae3. Prog. Mater. Sci. 2016;82:151–233. doi: 10.1016/j.pmatsci.2016.04.004. DOI
Park N., Zhao L., Shibata A., Tsuji N. Dynamic Ferrite Transformation Behaviors in 6Ni-0.1C Steel. JOM. 2014;66:765–773. doi: 10.1007/s11837-014-0913-3. DOI
Capdevila C., Caballero F.G., García-Mateo C., de Andres C.G. The role of inclusions and austenite grain size on intragranular nucleation of ferrite in medium carbon microalloyed steels. Mater. Trans. 2004;45:2678–2685. doi: 10.2320/matertrans.45.2678. DOI
Kawulok R., Schindler I., Mizera J., Kawulok P., Rusz S., Opěla P., Podolinský P., Čmiel K.M. Transformation diagrams of selected steel grades with consideration of deformation effect. Arch. Metall. Mater. 2018;63:55–60. doi: 10.24425/118908. DOI
Zheng C., Raabe D., Li D. Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Mater. 2012;60:4768–4779. doi: 10.1016/j.actamat.2012.06.007. DOI
Wang C., Wang X., Kang J., Yuan G., Wang G. Effect of Austenitization Conditions on the Transformation Behavior of Low Carbon Steel Containing Ti–Ca Oxide Particles. Materials. 2017;12:1070. doi: 10.3390/ma12071070. PubMed DOI PMC
Karmakar A., Ghosh M., Chakrabarti D. Cold-rolling and inter-critical annealing of low-carbon steel: Effect of initial microstructure and heating-rate. Mater. Sci. Eng. A. 2013;564:389–399. doi: 10.1016/j.msea.2012.11.109. DOI
Zhao H., Wynne B.P., Palmiere E.J. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater. Charact. 2017;123:128–136. doi: 10.1016/j.matchar.2016.11.025. DOI
Tsukatani I., Hashimoto S., Inoue T. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite. ISIJ Int. 1991;31:992–1000. doi: 10.2355/isijinternational.31.992. DOI
Adamczyk J., Grajcar A. Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing. J. Mater. Process. Technol. 2005;162–163:267–274. doi: 10.1016/j.jmatprotec.2005.02.032. DOI
Grajcar A., Morawiec M., Zalecki W. Austenite Decomposition and Precipitation Behavior of Plastically Deformed Low-Si Microalloyed Steel. Metals. 2018;8:1028. doi: 10.3390/met8121028. DOI
Kawulok R., Schindler I., Kawulok P., Rusz S., Opěla P., Solowski Z., Čmiel K.M. Effect of deformation on the CCT diagram of steel 32CrB4. Metalurgija. 2015;54:473–476.
Yin S.B., Sun X.J., Liu Q.Y., Zhang Z.B. Influence of Deformation on Transformation of Low-Carbon and High Nb-Containing Steel during Continuous Cooling. J. Iron Steel Res. Int. 2010;17:43–47. doi: 10.1016/S1006-706X(10)60057-X. DOI
Domański T., Piekarska W., Kubiak M., Saternus Z. Determination of the final microstructure during processing carbon steel hardening. Procedia Eng. 2016;136:77–81. doi: 10.1016/j.proeng.2016.01.177. DOI
Kawulok R., Schindler I., Kawulok P., Rusz S., Opela P., Kliber J., Solowski Z., Čmiel K.M., Podolinsky P., Mališ M., et al. Transformation kinetics of selected steel grades after plastic deformation. Metalurgija. 2016;55:357–360.
Cai M.H., Ding H., Lee Y.K. Dynamic strain-induced ferrite transformation during hot compression of low carbon Si-Mn steels. Mater. Trans. 2011;52:1722–1727. doi: 10.2320/matertrans.M2011117. DOI
Mohamadizadeh A., Zarei-Hanzaki A., Heshmati-Manesh S., Imandoust A. The effect of strain induced ferrite transformation on the microstructural evolutions and mechanical properties of a TRIP-assisted steel. Mater. Sci. Eng. A. 2014;607:621–629. doi: 10.1016/j.msea.2014.04.044. DOI
Du L.X., Yi H.L., Ding H., Liu X.H., Wang G.D. Effects of Deformation on Bainite Transformation During Continuous Cooling of Low Carbon Steels. J. Iron Steel Res. Int. 2006;13:37–39. doi: 10.1016/S1006-706X(06)60041-1. DOI
Grajcar A., Zalecki W., Skrzypczyk P., Kilarski A., Kowalski A., Kołodziej S. Dilatometric study of phase transformations in advanced high-strength bainitic steel. J. Therm. Anal. Calorim. 2014;118:739–748. doi: 10.1007/s10973-014-4054-2. DOI
Liu Z., Yao K.F., Liu Z. Quantitative research on effects of stresses and strains on bainitic transformation kinetics and transformation plasticity. Mater. Sci. Technol. 2000;16:643–647. doi: 10.1179/026708300101508216. DOI
Xu Y., Xu G., Mao X., Zhao G., Bao S. Method to evaluate the kinetics of bainite transformation in low-temperature nanobainitic steel using thermal dilatation curve analysis. Metals. 2017;7:330. doi: 10.3390/met7090330. DOI
Kawata H., Fujiwara K., Takahashi M. Effect of carbon content on bainite transformation start temperature in low carbon Fe–9Ni–C alloys. ISIJ Int. 2017;57:1866–1873. doi: 10.2355/isijinternational.ISIJINT-2017-239. DOI
He B.B., Xu W., Huang M.X. Increase of martensite start temperature after small deformation of austenite. Mater. Sci. Eng. A. 2014;609:141–146. doi: 10.1016/j.msea.2014.04.108. DOI
Nikravesh M., Nadeiri M., Akbari G. Influence of Hot Plastic Deformation and Cooling Rate on Martensite and Bainite Start Temperatures in 22MnB5 steel. Mater. Sci. Eng. A. 2012;540:24–29. doi: 10.1016/j.msea.2012.01.018. DOI
Wang H.Z., Yang P., Mao W.M., Lu F.Y. Effect of hot deformation of austenite on martensitic transformation in high manganese steel. J. Alloys Compd. 2013;558:26–33. doi: 10.1016/j.jallcom.2012.12.032. DOI
Kruglova A.A., Orlov V.V., Khlusova E.I. Effect of hot plastic deformation in the austenite interval on structure formation in low-alloyed low-carbon steels. Met. Sci. Heat Treat. 2007;49:556–560. doi: 10.1007/s11041-007-0102-x. DOI
Ryan N.D., McQueen H.J. Flow Stress, Flow stress, dynamic restoration, strain hardening and ductility in hot working of 316 steel. J. Mater. Process. Technol. 1990;21:177–199. doi: 10.1016/0924-0136(90)90005-F. DOI
Poliak E.I., Jonas J.J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 1996;44:127–136. doi: 10.1016/1359-6454(95)00146-7. DOI
Pilehva F., Zarei-Hanzaki A., Fatemi-Varzaneh S.M., Khalesian A.R. Hot Deformation and Dynamic Recrystallization of Ti-6Al-7Nb Biomedical Alloy in Single-Phase β Region. J. Mater. Eng. Perform. 2015;24:1799–1808. doi: 10.1007/s11665-015-1468-3. DOI
Luo R., Zheng Q., Zhu J.J., Guo S., Li D.S., Xu G.F., Cheng X.N. Dynamic recrystallization behavior of Fe–20Cr–30Ni–0.6Nb–2Al–Mo alloy. Rare Met. 2019;38:181–188. doi: 10.1007/s12598-016-0871-8. DOI
Schindler I., Opěla P., Kawulok P., Sojka J., Konečná K., Rusz S., Kawulok R., Sauer M., Turoňová P. Hot deformation behaviour of Mn–Cr–Mo low-alloy steel in various phase regions. Metals. 2020;10:1225. doi: 10.3390/met10091255. DOI
Adamczyk J., Opiela M. Influence of the thermo-mechanical treatment parameters on the inhomogeneity of the austenite structure and mechanical properties of the Cr-Mo steel with Nb, Ti, and B microadditions. J. Mater. Process. Technol. 2004;157:456–461. doi: 10.1016/j.jmatprotec.2004.07.148. DOI
Ali M., Nyo T., Kaijalainen A., Hannula J., Porter D., Kömi J. Influence of chromium content on the microstructure and mechanical properties of thermomechanically hot-rolled low-carbon bainitic steels containing niobium. Appl. Sci. 2020;10:344. doi: 10.3390/app10010344. DOI
Sun W.P., Hawbolt E.B. Comparison between static and metadynamic recrystallization an application to the hot rolling of steels. ISIJ Int. 1997;37:1000–1009. doi: 10.2355/isijinternational.37.1000. DOI
Zahiri S.H., Hodgson P.D. The static, dynamic and metadynamic recrystallisation of a medium carbon steel. Mater. Sci. Technol. 2004;20:458–464. doi: 10.1179/026708304225012071. DOI
Li L., Zheng L., Ye B., Tong Z. Metadynamic and static recrystallization softening behavior of a bainite steel. Met. Mater. Int. 2018;24:60–66. doi: 10.1007/s12540-017-7201-z. DOI
Zener C., Hollomon J.H. Effect of Strain Rate Upon Plastic Flow of Steel. J. Appl. Phys. 1944;15:22–32. doi: 10.1063/1.1707363. DOI
Sellars C.M., Whiteman J.A. Recrystallization and grain growth in hot rolling. Met. Sci. 1979;13:187–194. doi: 10.1179/msc.1979.13.3-4.187. DOI
Najafizadeh A., Jonas J.J. Predicting the Critical Stress for Initiation of Dynamic Recrystallization. ISIJ Int. 2006;46:1679–1684. doi: 10.2355/isijinternational.46.1679. DOI
Liu X.G., Zhang L.G., Qi R.S., Chen L., Jin M., Guo B.F. Prediction of Critical Conditions for Dynamic Recrystallization in 316LN Austenitic Steel. J. Iron Steel Res. Int. 2016;23:238–243. doi: 10.1016/S1006-706X(16)30040-1. DOI
Ma Z., Hu F., Wang Z., Fu K., Wei Z., Wang J., Li W. Constitutive Equation and Hot Processing Map of Mg-16Al Magnesium Alloy Bars. Materials. 2020;13:3107. doi: 10.3390/ma13143107. PubMed DOI PMC
Vajinder S., Mondal C., Sarkar R., Bhattacharjee P.P., Ghosal P. Dynamic recrystallization of a β(B2)-stabilized γ-TiAl based Ti–45Al–8Nb–2Cr-0.2B alloy: The contributions of constituent phases and Zener-Hollomon parameter modulated recrystallization mechanisms. J. Alloys Compd. 2020;828:154386. doi: 10.1016/j.jallcom.2020.154386. DOI
Kumar S., Karmakar A., Nath S.K. Comparative Assessment on the Hot Deformation Behaviour of 9Cr–1Mo Steel with 1Cr–1Mo Steel. Met. Mater. Int. 2020;26:1–16. doi: 10.1007/s12540-020-00826-2. DOI
Varela-Castro G., Cabrera J.M., Prado J.M. Critical strain for dynamic recrystallisation. The particular case of steels. Metals. 2020;10:135. doi: 10.3390/met10010135. DOI
Hot Deformation and Microstructure Evolution of Metallic Materials
Determination of CCT Diagram by Dilatometry Analysis of High-Strength Low-Alloy S960MC Steel