Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
33209284
PubMed Central
PMC7663067
DOI
10.1002/ece3.6854
PII: ECE36854
Knihovny.cz E-resources
- Keywords
- Central Europe, bark beetles, climate change, disturbance management, salvage logging, simulation model, tree species diversity,
- Publication type
- Journal Article MeSH
Wind and bark beetle disturbances have increased in recent decades, affecting Europe's coniferous forests with particular severity. Management fostering forest diversity and resilience is deemed to effectively mitigate disturbance impacts, yet its efficiency and interaction with other disturbance management measures remain unclear.We focused on Central Europe, which has become one of the hotspots of recent disturbance changes. We used the iLand ecosystem model to understand the interplay between species composition of the forest, forest disturbance dynamics affected by climate change, and disturbance management. The tested measures included (a) active transformation of tree species composition toward site-matching species; (b) intensive removal of windfelled trees, which can support the buildup of bark beetle populations; and (c) reduction of mature and vulnerable trees on the landscape via modified harvesting regimes.We found that management systems aiming to sustain the dominance of Norway spruce in the forest are failing under climate change, and none of the measures applied could mitigate the disturbance impacts. Conversely, management systems fostering forest diversity substantially reduced the level of disturbance. Significant disturbance reduction has been achieved even without salvaging and rotation length reduction, which is beneficial for ecosystem recovery, carbon, and biodiversity. Synthesis and applications: We conclude that climate change amplifies the contrast in vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance. Whereas forests dominated by Norway spruce are not likely to be sustained in Central Europe under climate change, different management strategies can be applied in species-diverse forests to reach the desired control over the disturbance dynamic. Our findings justify some unrealistic expectations about the options to control disturbance dynamics under climate change and highlight the importance of management that fosters forest diversity.
See more in PubMed
Bentz, B. J. , Jönsson, A. M. , Schroeder, M. , Weed, A. , Wilcke, R. A. I. , & Larsson, K. (2019). Ips typographus and Dendroctonus ponderosae models project thermal suitability for intra‐ and inter‐continental establishment in a changing climate. Frontiers in Forests and Global Change, 2, 1–17. 10.3389/ffgc.2019.00001 DOI
Berryman, A. A. (1988). Dynamics of Forest Insect Populations – Patterns, Causes, Implications. : Springer, US, Springer Science+Business Media.
Beudert, B. , Bässler, C. , Thorn, S. , Noss, R. , Schröder, B. , Dieffenbach‐Fries, H. , Foullois, N. , & Müller, J. (2015). Bark beetles increase biodiversity while maintaining drinking water quality. Conservation Letters, 8, 272–281. 10.1111/conl.12153 DOI
Björkman, C. , Bylund, H. , Nilsson, U. , Nordlander, G. , & Schroeder, M. (2015). Effects of new forest management on insect damage risk in a changing climate In Björkman C., & Niemelä P. (Eds.), Climate change and insect pests (p. 291). : Antony Rowe, CPI Group (UK) Ltd.
Cox, M. (2016). The pathology of command and control: A formal synthesis. Ecology and Society, 21, 1–8. 10.5751/ES-08698-210333 PubMed DOI
Cudmore, T. J. , Björklund, N. , Carroll, A. L. , & Lindgren, B. S. (2010). Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in naïve host tree populations. Journal of Applied Ecology, 47, 1036–1043. 10.1111/j.1365-2664.2010.01848.x DOI
Dobor, L. , Hlásny, T. , Rammer, W. , Barka, I. , Trombik, J. , Pavlenda, P. , Šebeň, V. , Štěpánek, P. , & Seidl, R. (2018). Post‐disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agricultural and Forest Meteorology, 263, 308–322. 10.1016/j.agrformet.2018.08.028 PubMed DOI PMC
Dobor, L. , Hlásny, T. , Rammer, W. , Zimová, S. , Barka, I. , & Seidl, R. (2019). Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? Journal of Applied Ecology, 57, 67–76. 10.1111/1365-2664.13518 DOI
Dobor, L. , Hlásny, T. , Rammer, W. , Zimová, S. , Barka, I. , & Seidl, R. (2020). Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. Journal of Environmental Management, 254, 1–12. 10.1016/j.jenvman.2019.109792 PubMed DOI PMC
Faccoli, M. , & Stergulc, F. (2008). Damage reduction and performance of mass trapping devices for forest protection against the spruce bark beetle, Ips typographus (Coleoptera Curculionidae Scolytinae). Annals of Forest Science, 65, 309 10.1051/forest:2008010 DOI
Frank, A. , Howe, G. T. , Sperisen, C. , Brang, P. , Clair, J. B. S. , Schmatz, D. R. , & Heiri, C. (2017). Risk of genetic maladaptation due to climate change in three major European tree species. Global Change Biology, 23, 5358–5371. 10.1111/gcb.13802 PubMed DOI
Gardiner, B. A. , & Quine, C. P. (2000). Management of forests to reduce the risk of abiotic damage ‐ a review with particular reference to the effects of strong winds. Forest Ecology and Management, 135, 261–277. 10.1016/S0378-1127(00)00285-1 DOI
Giorgi, F. , Jones, C. , & Asrar, G. R. (2009). Addressing climate information needs at the regional level: The CORDEX framework. WMO Bulletin, 58, 175–183.
Grégoire, J.‐C. , Raffa, K. F. , & Lindgren, B. S. (2015). Economics and Politics of Bark Beetles In Vega F. E., & Hofstetter R. W. (Eds.), Bark beetles biology and ecology of native and invasive species (pp. 585–613). Elsevier, Academic Press.
Griess, V. C. , Acevedo, R. , Härtl, F. , Staupendahl, K. , & Knoke, T. (2012). Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. Forest Ecology and Management, 267, 284–296. 10.1016/j.foreco.2011.11.035 DOI
Gubka, A. , Nikolov, C. , Gubka, K. , Galko, J. , Vakula, J. , Kunca, A. , & Leontovyč, R. (2013). History, present and expected future of forests in Slovakia. American Journal of Plant Sciences, 4, 711–716. 10.4236/ajps.2013.43a090 DOI
Guyot, V. , Castagneyrol, B. , Vialatte, A. , Deconchat, M. , & Jactel, H. (2016). Tree diversity reduces pest damage in mature forests across Europe. Biology Letters, 12, 1–5. 10.1098/rsbl.2015.1037 PubMed DOI PMC
Halaj, J. , & Petráš, R. (1998). Rastové tabuľ ky hlavných drevín. Slovak Academic Press.
Hlásny, T. , Krokene, P. , Liebhold, A. , Montagné‐Huck, C. , Müller, J. , Qin, H. , Raffa, K. , Schelhaas, M.‐J. , Seidl, R. , Svoboda, M. , & Viiri, H. (2019). Living with bark beetles: Impacts, outlook and management options. From Science to Policy 8. European Forest Institute.
Honkaniemi, J. , Rammer, W. , & Seidl, R. (2020). Norway spruce at the trailing edge: The effect of landscape configuration and composition on climate resilience. Landscape Ecology, 35, 591–606. 10.1007/s10980-019-00964-y PubMed DOI PMC
Huang, J. , Kautz, M. , Trowbridge, A. M. , Hammerbacher, A. , Raffa, K. F. , Adams, H. D. , Goodsman, D. W. , Xu, C. , Meddens, A. J. H. , Kandasamy, D. , Gershenzon, J. , Seidl, R. , & Hartmann, H. (2019). Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytologist, 225, 26–36. 10.1111/nph.16173 PubMed DOI
Huber, N. , Bugmann, H. , & Lafond, V. (2020). Capturing ecological processes in dynamic forest models: Why there is no silver bullet to cope with complexity. Ecosphere, 11, 10.1002/ecs2.3109 DOI
Jactel, H. , Nicoll, B. C. , Branco, M. , Gonzalez‐Olabarria, J. R. , Grodzki, W. , Långström, B. , Moreira, F. , Netherer, S. , Orazio, C. , Piou, D. , Santos, H. , Schelhaas, M. J. , Tojic, K. , & Vodde, F. (2009). The influences of forest stand management on biotic and abiotic risks of damage. Annals of Forest Science, 66, 1–18. 10.1051/forest/2009054 DOI
Jandl, R. , Spathelf, P. , Bolte, A. , & Prescott, C. E. (2019). Forest adaptation to climate change—is non‐management an option? Annals of Forest Science, 76, 1–13. 10.1007/s13595-019-0827-x DOI
Jönsson, A. M. , Appelberg, G. , Harding, S. , & Bärring, L. (2009). Spatio‐temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Global Change Biology, 15, 486–499. 10.1111/j.1365-2486.2008.01742.x DOI
Kausrud, K. , Økland, B. , Skarpaas, O. , Grégoire, J.‐C. , Erbilgin, N. , & Stenseth, N. C. (2012). Population dynamics in changing environments: The case of an eruptive forest pest species. Biological Reviews, 87, 34–51. 10.1111/j.1469-185X.2011.00183.x PubMed DOI
Klimo, E. , Hager, H. , & Kulhavý, J. (2000). Spruce Monocultures in Central Europe – Problems and Prospects Proceedings 33 (p. 208). European Forest Institute.
Komonen, A. , Schroeder, L. M. , & Weslien, J. (2011). Ips typographus population development after a severe storm in a nature reserve in southern Sweden. Journal of Applied Entomology, 135, 132–141. 10.1111/j.1439-0418.2010.01520.x DOI
Konôpka, B. , Zach, P. , & Kulfan, J. (2016). Wind – an important ecological factor and destructive agent in forests. Forestry Journal, 62, 123–130. 10.1515/forj-2016-0013 DOI
Koricheva, J. , Vehviläinen, H. , Riihimäki, J. , Ruohomäki, K. , Kaitaniemi, P. , & Ranta, H. (2006). Diversification of tree stands as a means to manage pests and diseases in boreal forests: Myth or reality? Canadian Journal of Forest Research, 36, 324–336. 10.1139/x05-172 DOI
Kottek, M. , Grieser, J. , Beck, C. , Rudolf, B. , & Rubel, F. (2006). World map of the Köppen‐Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263. 10.1127/0941-2948/2006/0130 DOI
Landsberg, J. J. , & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation‐use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95, 209–228. 10.1016/S0378-1127(97)00026-1 DOI
Lassauce, A. , Paillet, Y. , Jactel, H. , & Bouget, C. (2011). Deadwood as a surrogate for forest biodiversity: Meta‐analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecological Indicators, 11, 1027–1039. 10.1016/j.ecolind.2011.02.004 DOI
Leverkus, A. B. , Benayas, J. M. R. , Castro, J. , Boucher, D. , Brewer, S. , Collins, B. M. , Donato, D. , Fraver, S. , Kishchuk, B. E. , Lee, E. , Lindenmayer, D. B. , Lingua, E. , Macdonald, E. , Marzano, R. , Rhoades, C. C. , Royo, A. , Thorn, S. , Wagenbrenner, J. W. , Waldron, K. , … Gustafsson, L. (2018). Salvage logging effects on regulating and supporting ecosystem services — a systematic map. Canadian Journal of Forest Research, 48, 983–1000. 10.1139/cjfr-2018-0114 DOI
Leverkus, A. B. , Lindenmayer, D. B. , Thorn, S. , & Gustafsson, L. (2018). Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Global Ecology and Biogeography, 27, 1140–1154. 10.1111/geb.12772 DOI
Lindroth, A. , Lagergren, F. , Grelle, A. , Klemedtsson, L. , Langvall, O. , Weslien, P. , & Tuulik, J. (2009). Storms can cause Europe‐wide reduction in forest carbon sink. Global Change Biology, 15, 346–355. 10.1111/j.1365-2486.2008.01719.x DOI
Marini, L. , Ayres, M. P. , Battisti, A. , & Faccoli, M. (2012). Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 115, 327–341. 10.1007/s10584-012-0463-z DOI
Mette, T. , Dolos, K. , Meinardus, C. , Bräuning, A. , Reineking, B. , Blaschke, M. , Pretzsch, H. , Beierkuhnlein, C. , Gohlke, A. , & Wellstein, C. (2013). Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere, 4, art145 10.1890/ES13-00115.1 DOI
Mori, A. S. (2017). Biodiversity and ecosystem services in forests: Management and restoration founded on ecological theory. Journal of Applied Ecology, 54, 7–11. 10.1111/1365-2664.12854 DOI
Moser, B. , Temperli, C. , Schneiter, G. , & Wohlgemuth, T. (2010). Potential shift in tree species composition after interaction of fire and drought in the Central Alps. European Journal of Forest Research, 129, 625–633. 10.1007/s10342-010-0363-6 DOI
Müller, M. (2011). How natural disturbance triggers political conflict: Bark beetles and the meaning of landscape in the Bavarian Forest. Global Environmental Change, 21, 935–946. 10.1016/j.gloenvcha.2011.05.004 DOI
Neuner, S. , Albrecht, A. , Cullmann, D. , Engels, F. , Griess, V. C. , Hahn, W. A. , Hanewinkel, M. , Härtl, F. , Kölling, C. , Staupendahl, K. , & Knoke, T. (2015). Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Global Change Biology, 21, 935–946. 10.1111/gcb.12751 PubMed DOI
Rammer, W. , & Seidl, R. (2015). Coupling human and natural systems: Simulating adaptive management agents in dynamically changing forest landscapes. Global Environmental Change, 35, 475–485. 10.1016/j.gloenvcha.2015.10.003 DOI
Rizman, I. (2005). Knowledge‐base on species composition in site units of forest typology for average (typical) conditions of Slovakia. National Forest Centre, Electronic Material.
Roberge, J.‐M. , Laudon, H. , Björkman, C. , Ranius, T. , Sandström, C. , Felton, A. , Sténs, A. , Nordin, A. , Granström, A. , Widemo, F. , Bergh, J. , Sonesson, J. , Stenlid, J. , & Lundmark, T. (2016). Socio‐ecological implications of modifying rotation lengths in forestry. Ambio, 45, 109–123. 10.1007/s13280-015-0747-4 PubMed DOI PMC
Seidl, R. (2014). The shape of ecosystem management to come: Anticipating risks and fostering resilience. BioScience, 64, 1159–1169. 10.1093/biosci/biu172 PubMed DOI PMC
Seidl, R. , Albrich, K. , Thom, D. , & Rammer, W. (2018). Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. Journal of Environmental Management, 209, 46–56. 10.1016/j.jenvman.2017.12.014 PubMed DOI PMC
Seidl, R. , & Blennow, K. (2012). Pervasive growth reduction in Norway spruce forests following wind disturbance. PLoS One, 7, e33301 10.1371/journal.pone.0033301 PubMed DOI PMC
Seidl, R. , Fernandes, P. M. , Fonseca, T. F. , Gillet, F. , Jönsson, A. M. , Merganičová, K. , Netherer, S. , Arpaci, A. , Bontemps, J.‐D. , Bugmann, H. , González‐Olabarria, J. R. , Lasch, P. , Meredieu, C. , Moreira, F. , Schelhaas, M.‐J. , & Mohren, F. (2011). Modelling natural disturbances in forest ecosystems: A review. Ecological Modelling, 222, 903–924. 10.1016/J.ECOLMODEL.2010.09.040 DOI
Seidl, R. , & Rammer, W. (2017). Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecology, 32, 1485–1498. 10.1007/s10980-016-0396-4 PubMed DOI PMC
Seidl, R. , Rammer, W. , & Blennow, K. (2014). Simulating wind disturbance impacts on forest landscapes: Tree‐level heterogeneity matters. Environmental Modelling and Software, 51, 1–11. 10.1016/j.envsoft.2013.09.018 DOI
Seidl, R. , Rammer, W. , Scheller, R. M. , & Spies, T. A. (2012). An individual‐based process model to simulate landscape‐scale forest ecosystem dynamics. Ecological Modelling, 231, 87–100. 10.1016/j.ecolmodel.2012.02.015 DOI
Seidl, R. , Schelhaas, M.‐J. , Rammer, W. , & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4, 806 10.1038/nclimate2318 PubMed DOI PMC
Senf, C. , Pflugmacher, D. , Zhiqiang, Y. , Sebald, J. , Knorn, J. , Neumann, M. , Hostert, P. , & Seidl, R. (2018). Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nature Communications, 9, 1–8. 10.1038/s41467-018-07539-6 PubMed DOI PMC
Senf, C. , & Seidl, R. (2018). Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Global Change Biology, 24, 1201–1211. 10.1111/gcb.13897 PubMed DOI PMC
Silva Pedro, M. , Rammer, W. , & Seidl, R. (2015). Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia, 177, 619–630. 10.1007/s00442-014-3150-0 PubMed DOI
Spiecker, H. , Hansen, J. , Klimo, E. , Skovsgaard, J. P. , Sterba, H. , & von Teuffel, K. (2004). Norway spruce conversion: Options and consequences. : Brill.
Spiecker, H. , Lindner, M. , & Schuler, J. (2019). Douglas‐fir – an option for Europe, EFI what science can tell us 9.
Stadelmann, G. , Bugmann, H. , Meier, F. , Wermelinger, B. , & Bigler, C. (2013). Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. Forest Ecology and Management, 305, 273–281. 10.1016/j.foreco.2013.06.003 DOI
Thom, D. , Golivets, M. , Edling, L. , Meigs, G. , Gourevitch, J. , Sonter, L. , Galford, G. , & Keeton, W. (2019). The climate sensitivity of carbon, timber, and species richness co‐varies with forest age in boreal‐temperate North America. Global Change Biology, 25, 2446–2458. 10.1111/gcb.14656 PubMed DOI
Thom, D. , Rammer, W. , Garstenauer, R. , & Seidl, R. (2018). Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences, 15, 5699–5713. 10.5194/bg-15-5699-2018 DOI
Thom, D. , Rammer, W. , & Seidl, R. (2017). The impact of future forest dynamics on climate: Interactive effects of changing vegetation and disturbance regimes. Ecological Monographs, 87, 665–684. 10.1002/ecm.1272 PubMed DOI PMC
Thom, D. , & Seidl, R. (2016). Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews of the Cambridge Philosophical Society, 91, 760–781. 10.1111/brv.12193 PubMed DOI PMC
Turner, D. P. , Guzy, M. , Lefsky, M. A. , Ritts, W. D. , Van Tuyl, S. , & Law, B. E. (2004). Monitoring forest carbon sequestration with remote sensing and carbon cycle modeling. Environmental Management, 33, 457–466. 10.1007/s00267-003-9103-8 PubMed DOI
Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus ‐ A review of recent research. Forest Ecology and Management, 202, 67–82. 10.1016/j.foreco.2004.07.018 DOI
Zang, C. , Hartl‐Meier, C. , Dittmar, C. , Rothe, A. , & Menzel, A. (2014). Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Global Change Biology, 20, 3767–3779. 10.1111/gcb.12637 PubMed DOI
Zhang, Q. H. , & Schlyter, F. (2003). Redundancy, synergism, and active inhibitory range of non‐host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus. Oikos, 101, 299–310. 10.1034/j.1600-0706.2003.111595.x DOI
Zimová, S. , Dobor, L. , Hlásny, T. , Rammer, W. , & Seidl, R. (2020). Reducing rotation age to address increasing disturbances in Central Europe: Potential and limitations. Forest Ecology and Management, 475, 118408. PubMed PMC