Ring-closing metathesis of prochiral oxaenediynes to racemic 4-alkenyl-2-alkynyl-3,6-dihydro-2H-pyrans

. 2020 ; 16 () : 2757-2768. [epub] 20201113

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33224302

The prochiral 4-(allyloxy)hepta-1,6-diynes, optionally modified in the positions 1 and 7 with an alkyl or ester group, undergo a chemoselective ring-closing enyne metathesis yielding racemic 4-alkenyl-2-alkynyl-3,6-dihydro-2H-pyrans. Among the catalysts tested, Grubbs 1st generation precatalyst in the presence of ethene (Mori conditions) gave superior results compared to the more stable Grubbs or Hoveyda-Grubbs 2nd generation precatalysts. This is probably caused by a suppression of the subsequent side-reactions of the enyne metathesis product with ethene. On the other hand, the 2nd generation precatalysts gave better yields in the absence of ethene. The metathesis products, containing both a triple bond and a conjugated system, can be successfully orthogonally modified. For example, the metathesis product of 5-(allyloxy)nona-2,7-diyne reacted chemo- and stereoselectively in a Diels-Alder reaction with N-phenylmaleimide affording the tricyclic products as a mixture of two separable diastereoisomers, the configuration of which was estimated by DFT computations. The reported enediyne metathesis paves the way to the enantioselective enyne metathesis yielding chiral building blocks for compounds with potential biological activity, e.g., norsalvinorin or cacospongionolide B.

Zobrazit více v PubMed

O'Leary D J, O'Neil G W. Cross-Metathesis. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 2. Weinheim, Germany: Wiley-VCH; 2015. pp. 171–294. DOI

Li J, Lee D. Enyne Metathesis. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 2. Weinheim, Germany: Wiley-VCH; 2015. pp. 381–444. DOI

Diver S T, Giessert A J. Chem Rev. 2004;104:1317–1382. doi: 10.1021/cr020009e. PubMed DOI

Fischmeister C, Bruneau C. Beilstein J Org Chem. 2011;7:156–166. doi: 10.3762/bjoc.7.22. PubMed DOI PMC

Hanson P R, Maitra S, Chegondi R, Markley J L. General Ring-Closing Metathesis. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 2. Weinheim, Germany: Wiley-VCH; 2015. pp. 1–170. DOI

Diver S T, Griffiths J R. Ene-Yne Metathesis. In: Grela K, editor. Olefin Metathesis: Theory and Practice. Weinheim, Germany: Wiley-VCH; 2014. pp. 153–185. DOI

Slugovc C. Synthesis of Homopolymers and Copolymers. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 3. Weinheim, Germany: Wiley-VCH; 2015. pp. 1–23. DOI

Grela K, Kajetanowicz A. Beilstein J Org Chem. 2019;15:2765–2766. doi: 10.3762/bjoc.15.267. PubMed DOI PMC

Li J, Lee D. Eur J Org Chem. 2011;(23):4269–4287. doi: 10.1002/ejoc.201100438. DOI

Holub N, Blechert S. Chem – Asian J. 2007;2:1064–1082. doi: 10.1002/asia.200700072. PubMed DOI

Hoveyda A H, Khan R K M, Torker S, Malcolmson S J. Catalyst-Controlled Stereoselective Olefin Metathesis. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 2. Weinheim, Germany: Wiley-VCH; 2015. pp. 503–562. DOI

Nolan S P, Clavier H. Chem Soc Rev. 2010;39:3305–3316. doi: 10.1039/b912410c. PubMed DOI

Paek S-M. Molecules. 2012;17(3):3348–3358. doi: 10.3390/molecules17033348. PubMed DOI PMC

Escorihuela J, Sedgwick D M, Llobat A, Medio-Simón M, Barrio P, Fustero S. Beilstein J Org Chem. 2020;16:1662–1682. doi: 10.3762/bjoc.16.138. PubMed DOI PMC

La D S, Alexander J B, Cefalo D R, Graf D D, Hoveyda A H, Schrock R R. J Am Chem Soc. 1998;120:9720–9721. doi: 10.1021/ja9821089. DOI

Zhu S S, Cefalo D R, La D S, Jamieson J Y, Davis W M, Hoveyda A H, Schrock R R. J Am Chem Soc. 1999;121:8251–8259. doi: 10.1021/ja991432g. DOI

Hoveyda A H, Schrock R R. Chem – Eur J. 2001;7:945–950. doi: 10.1002/1521-3765(20010302)7:5<945::aid-chem945>3.0.co;2-3. PubMed DOI

Seiders T J, Ward D W, Grubbs R H. Org Lett. 2001;3:3225–3228. doi: 10.1021/ol0165692. PubMed DOI

Funk T W, Berlin J M, Grubbs R H. J Am Chem Soc. 2006;128:1840–1846. doi: 10.1021/ja055994d. PubMed DOI PMC

Stenne B, Timperio J, Savoie J, Dudding T, Collins S K. Org Lett. 2010;12:2032–2035. doi: 10.1021/ol100511d. PubMed DOI

Lee Y-J, Schrock R R, Hoveyda A H. J Am Chem Soc. 2009;131:10652–10661. doi: 10.1021/ja904098h. PubMed DOI PMC

Lloyd-Jones G C, Margue R G, de Vries J G. Angew Chem. 2005;117(45):7608–7613. doi: 10.1002/ange.200502243. PubMed DOI

Grotevendt A G D, Lummiss J A M, Mastronardi M L, Fogg D E. J Am Chem Soc. 2011;133(40):15918–15921. doi: 10.1021/ja207388v. PubMed DOI

Lee O S, Kim K H, Kim J, Kwon K, Ok T, Ihee H, Lee H-Y, Sohn J-H. J Org Chem. 2013;78:8242–8249. doi: 10.1021/jo401420f. PubMed DOI

Sashuk V, Grela K. J Mol Catal A: Chem. 2006;257:59–66. doi: 10.1016/j.molcata.2006.05.033. DOI

Clavier H, Nolan S P. Chem – Eur J. 2007;13:8029–8036. doi: 10.1002/chem.200700256. PubMed DOI

Clark J S, Townsend R J, Blake A J, Teat S J, Johns A. Tetrahedron Lett. 2001;42:3235–3238. doi: 10.1016/s0040-4039(01)00404-x. DOI

Brenneman J B, Machauer R, Martin S F. Tetrahedron. 2004;60:7301–7314. doi: 10.1016/j.tet.2004.06.021. DOI

Lejkowski M, Banerjee P, Schüller S, Münch A, Runsink J, Vermeeren C, Gais H-J. Chem – Eur J. 2012;18(12):3529–3548. doi: 10.1002/chem.201103060. PubMed DOI

Zhao Y, Hoveyda A H, Schrock R R. Org Lett. 2011;13:784–787. doi: 10.1021/ol1030525. PubMed DOI PMC

Harvey J S, Giuffredi G T, Gouverneur V. Org Lett. 2010;12:1236–1239. doi: 10.1021/ol100098c. PubMed DOI

Nicolaou K C, Skokotas G, Furaya S, Suemune H, Nicolaou D C. Angew Chem. 1990;102:1066–1068. doi: 10.1002/ange.19901020914. DOI

Buck M, Chong J M. Tetrahedron Lett. 2001;42:5825–5827. doi: 10.1016/s0040-4039(01)01131-5. DOI

Mori M, Sakakibara N, Kinoshita A. J Org Chem. 1998;63:6082–6083. doi: 10.1021/jo980896e. PubMed DOI

Zhang L-L, Zhang W-Z, Ren X, Tan X-Y, Lu X-B. Tetrahedron Lett. 2012;53:3389–3392. doi: 10.1016/j.tetlet.2012.04.107. DOI

Kitamura T, Sato Y, Mori M. Adv Synth Catal. 2002;344:678–693. doi: 10.1002/1615-4169(200208)344:6/7<678::aid-adsc678>3.0.co;2-p. DOI

Kinoshita A, Mori M. Synlett. 1994;(12):1020–1022. doi: 10.1055/s-1994-34973. DOI

Cheung A K, Murelli R, Snapper M L. J Org Chem. 2004;69:5712–5719. doi: 10.1021/jo049285e. PubMed DOI

Bergman Y E, Mulder R, Perlmutter P. J Org Chem. 2009;74:2589–2591. doi: 10.1021/jo802623n. PubMed DOI

Lanfranchi D A, Bour C, Hanquet G. Eur J Org Chem. 2011;(15):2818–2826. doi: 10.1002/ejoc.201100207. DOI

Kotha S, Chavan A S, Goyal D. ACS Omega. 2019;4:22261–22273. doi: 10.1021/acsomega.9b03020. PubMed DOI PMC

Poeylaut-Palena A A, Testero S A, Mata E G. Chem Commun. 2011;47:1565–1567. doi: 10.1039/c0cc04115g. PubMed DOI

Gaussian 16. Wallingford, CT, USA: Gaussian, Inc.; 2016.

GaussView. Shawnee Mission, KS, USA: Semichem Inc.; 2016.

Zhao Y, Truhlar D G. Theor Chem Acc. 2008;120(1-3):215–241. doi: 10.1007/s00214-007-0310-x. DOI

Weigend F, Ahlrichs R. Phys Chem Chem Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Vahtras O, Almlöf J, Feyereisen M W. Chem Phys Lett. 1993;213:514–518. doi: 10.1016/0009-2614(93)89151-7. DOI

Marenich A V, Cramer C J, Truhlar D G. J Phys Chem B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...