Ring-closing metathesis of prochiral oxaenediynes to racemic 4-alkenyl-2-alkynyl-3,6-dihydro-2H-pyrans
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33224302
PubMed Central
PMC7670115
DOI
10.3762/bjoc.16.226
Knihovny.cz E-zdroje
- Klíčová slova
- Diels–Alder reaction, enediyne, enyne metathesis, ring-closing metathesis, ruthenium precatalyst,
- Publikační typ
- časopisecké články MeSH
The prochiral 4-(allyloxy)hepta-1,6-diynes, optionally modified in the positions 1 and 7 with an alkyl or ester group, undergo a chemoselective ring-closing enyne metathesis yielding racemic 4-alkenyl-2-alkynyl-3,6-dihydro-2H-pyrans. Among the catalysts tested, Grubbs 1st generation precatalyst in the presence of ethene (Mori conditions) gave superior results compared to the more stable Grubbs or Hoveyda-Grubbs 2nd generation precatalysts. This is probably caused by a suppression of the subsequent side-reactions of the enyne metathesis product with ethene. On the other hand, the 2nd generation precatalysts gave better yields in the absence of ethene. The metathesis products, containing both a triple bond and a conjugated system, can be successfully orthogonally modified. For example, the metathesis product of 5-(allyloxy)nona-2,7-diyne reacted chemo- and stereoselectively in a Diels-Alder reaction with N-phenylmaleimide affording the tricyclic products as a mixture of two separable diastereoisomers, the configuration of which was estimated by DFT computations. The reported enediyne metathesis paves the way to the enantioselective enyne metathesis yielding chiral building blocks for compounds with potential biological activity, e.g., norsalvinorin or cacospongionolide B.
Zobrazit více v PubMed
O'Leary D J, O'Neil G W. Cross-Metathesis. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 2. Weinheim, Germany: Wiley-VCH; 2015. pp. 171–294. DOI
Li J, Lee D. Enyne Metathesis. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 2. Weinheim, Germany: Wiley-VCH; 2015. pp. 381–444. DOI
Diver S T, Giessert A J. Chem Rev. 2004;104:1317–1382. doi: 10.1021/cr020009e. PubMed DOI
Fischmeister C, Bruneau C. Beilstein J Org Chem. 2011;7:156–166. doi: 10.3762/bjoc.7.22. PubMed DOI PMC
Hanson P R, Maitra S, Chegondi R, Markley J L. General Ring-Closing Metathesis. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 2. Weinheim, Germany: Wiley-VCH; 2015. pp. 1–170. DOI
Diver S T, Griffiths J R. Ene-Yne Metathesis. In: Grela K, editor. Olefin Metathesis: Theory and Practice. Weinheim, Germany: Wiley-VCH; 2014. pp. 153–185. DOI
Slugovc C. Synthesis of Homopolymers and Copolymers. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 3. Weinheim, Germany: Wiley-VCH; 2015. pp. 1–23. DOI
Grela K, Kajetanowicz A. Beilstein J Org Chem. 2019;15:2765–2766. doi: 10.3762/bjoc.15.267. PubMed DOI PMC
Li J, Lee D. Eur J Org Chem. 2011;(23):4269–4287. doi: 10.1002/ejoc.201100438. DOI
Holub N, Blechert S. Chem – Asian J. 2007;2:1064–1082. doi: 10.1002/asia.200700072. PubMed DOI
Hoveyda A H, Khan R K M, Torker S, Malcolmson S J. Catalyst-Controlled Stereoselective Olefin Metathesis. In: Grubbs R H, Wenzel A G, O'Leary D J, et al., editors. Handbook of Metathesis. Vol. 2. Weinheim, Germany: Wiley-VCH; 2015. pp. 503–562. DOI
Nolan S P, Clavier H. Chem Soc Rev. 2010;39:3305–3316. doi: 10.1039/b912410c. PubMed DOI
Paek S-M. Molecules. 2012;17(3):3348–3358. doi: 10.3390/molecules17033348. PubMed DOI PMC
Escorihuela J, Sedgwick D M, Llobat A, Medio-Simón M, Barrio P, Fustero S. Beilstein J Org Chem. 2020;16:1662–1682. doi: 10.3762/bjoc.16.138. PubMed DOI PMC
La D S, Alexander J B, Cefalo D R, Graf D D, Hoveyda A H, Schrock R R. J Am Chem Soc. 1998;120:9720–9721. doi: 10.1021/ja9821089. DOI
Zhu S S, Cefalo D R, La D S, Jamieson J Y, Davis W M, Hoveyda A H, Schrock R R. J Am Chem Soc. 1999;121:8251–8259. doi: 10.1021/ja991432g. DOI
Hoveyda A H, Schrock R R. Chem – Eur J. 2001;7:945–950. doi: 10.1002/1521-3765(20010302)7:5<945::aid-chem945>3.0.co;2-3. PubMed DOI
Seiders T J, Ward D W, Grubbs R H. Org Lett. 2001;3:3225–3228. doi: 10.1021/ol0165692. PubMed DOI
Funk T W, Berlin J M, Grubbs R H. J Am Chem Soc. 2006;128:1840–1846. doi: 10.1021/ja055994d. PubMed DOI PMC
Stenne B, Timperio J, Savoie J, Dudding T, Collins S K. Org Lett. 2010;12:2032–2035. doi: 10.1021/ol100511d. PubMed DOI
Lee Y-J, Schrock R R, Hoveyda A H. J Am Chem Soc. 2009;131:10652–10661. doi: 10.1021/ja904098h. PubMed DOI PMC
Lloyd-Jones G C, Margue R G, de Vries J G. Angew Chem. 2005;117(45):7608–7613. doi: 10.1002/ange.200502243. PubMed DOI
Grotevendt A G D, Lummiss J A M, Mastronardi M L, Fogg D E. J Am Chem Soc. 2011;133(40):15918–15921. doi: 10.1021/ja207388v. PubMed DOI
Lee O S, Kim K H, Kim J, Kwon K, Ok T, Ihee H, Lee H-Y, Sohn J-H. J Org Chem. 2013;78:8242–8249. doi: 10.1021/jo401420f. PubMed DOI
Sashuk V, Grela K. J Mol Catal A: Chem. 2006;257:59–66. doi: 10.1016/j.molcata.2006.05.033. DOI
Clavier H, Nolan S P. Chem – Eur J. 2007;13:8029–8036. doi: 10.1002/chem.200700256. PubMed DOI
Clark J S, Townsend R J, Blake A J, Teat S J, Johns A. Tetrahedron Lett. 2001;42:3235–3238. doi: 10.1016/s0040-4039(01)00404-x. DOI
Brenneman J B, Machauer R, Martin S F. Tetrahedron. 2004;60:7301–7314. doi: 10.1016/j.tet.2004.06.021. DOI
Lejkowski M, Banerjee P, Schüller S, Münch A, Runsink J, Vermeeren C, Gais H-J. Chem – Eur J. 2012;18(12):3529–3548. doi: 10.1002/chem.201103060. PubMed DOI
Zhao Y, Hoveyda A H, Schrock R R. Org Lett. 2011;13:784–787. doi: 10.1021/ol1030525. PubMed DOI PMC
Harvey J S, Giuffredi G T, Gouverneur V. Org Lett. 2010;12:1236–1239. doi: 10.1021/ol100098c. PubMed DOI
Nicolaou K C, Skokotas G, Furaya S, Suemune H, Nicolaou D C. Angew Chem. 1990;102:1066–1068. doi: 10.1002/ange.19901020914. DOI
Buck M, Chong J M. Tetrahedron Lett. 2001;42:5825–5827. doi: 10.1016/s0040-4039(01)01131-5. DOI
Mori M, Sakakibara N, Kinoshita A. J Org Chem. 1998;63:6082–6083. doi: 10.1021/jo980896e. PubMed DOI
Zhang L-L, Zhang W-Z, Ren X, Tan X-Y, Lu X-B. Tetrahedron Lett. 2012;53:3389–3392. doi: 10.1016/j.tetlet.2012.04.107. DOI
Kitamura T, Sato Y, Mori M. Adv Synth Catal. 2002;344:678–693. doi: 10.1002/1615-4169(200208)344:6/7<678::aid-adsc678>3.0.co;2-p. DOI
Kinoshita A, Mori M. Synlett. 1994;(12):1020–1022. doi: 10.1055/s-1994-34973. DOI
Cheung A K, Murelli R, Snapper M L. J Org Chem. 2004;69:5712–5719. doi: 10.1021/jo049285e. PubMed DOI
Bergman Y E, Mulder R, Perlmutter P. J Org Chem. 2009;74:2589–2591. doi: 10.1021/jo802623n. PubMed DOI
Lanfranchi D A, Bour C, Hanquet G. Eur J Org Chem. 2011;(15):2818–2826. doi: 10.1002/ejoc.201100207. DOI
Kotha S, Chavan A S, Goyal D. ACS Omega. 2019;4:22261–22273. doi: 10.1021/acsomega.9b03020. PubMed DOI PMC
Poeylaut-Palena A A, Testero S A, Mata E G. Chem Commun. 2011;47:1565–1567. doi: 10.1039/c0cc04115g. PubMed DOI
Gaussian 16. Wallingford, CT, USA: Gaussian, Inc.; 2016.
GaussView. Shawnee Mission, KS, USA: Semichem Inc.; 2016.
Zhao Y, Truhlar D G. Theor Chem Acc. 2008;120(1-3):215–241. doi: 10.1007/s00214-007-0310-x. DOI
Weigend F, Ahlrichs R. Phys Chem Chem Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Vahtras O, Almlöf J, Feyereisen M W. Chem Phys Lett. 1993;213:514–518. doi: 10.1016/0009-2614(93)89151-7. DOI
Marenich A V, Cramer C J, Truhlar D G. J Phys Chem B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI