Activity-dependent interdomain dynamics of matrix metalloprotease-1 on fibrin
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
RGM137295A
NIH HHS - United States
PubMed
33244162
PubMed Central
PMC7692495
DOI
10.1038/s41598-020-77699-3
PII: 10.1038/s41598-020-77699-3
Knihovny.cz E-zdroje
- MeSH
- Escherichia coli metabolismus MeSH
- fibrinogen metabolismus MeSH
- hemopexin metabolismus MeSH
- katalytická doména fyziologie MeSH
- katalýza MeSH
- kinetika MeSH
- matrixová metaloproteinasa 1 metabolismus MeSH
- proteinové domény fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fibrinogen MeSH
- hemopexin MeSH
- matrixová metaloproteinasa 1 MeSH
The roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.
Department of Chemistry Colorado School of Mines 1500 Illinois Street Golden CO 80401 USA
Department of Physics Colorado School of Mines 1500 Illinois Street Golden CO 80401 USA
Warwick Medical School University of Warwick Coventry CV4 7AL UK
Zobrazit více v PubMed
Karplus M, Kuriyan J. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. 2005;102:6679–6685. doi: 10.1073/pnas.0408930102. PubMed DOI PMC
Henzler-Wildman K, Kern D. Dynamic personalities of proteins. Nature. 2007;450:964–972. doi: 10.1038/nature06522. PubMed DOI
Henzler-Wildman KA, et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature. 2007;450:913–916. doi: 10.1038/nature06407. PubMed DOI
Lewandowski JR, Halse ME, Blackledge M, Emsley L. Direct observation of hierarchical protein dynamics. Science. 2015;348:578–581. doi: 10.1126/science.aaa6111. PubMed DOI
Bhaskara RM, de Brevern AG, Srinivasan N. Understanding the role of domain–domain linkers in the spatial orientation of domains in multi-domain proteins. J. Biomol. Struct. Dyn. 2013;31:1467–1480. doi: 10.1080/07391102.2012.743438. PubMed DOI
Esteban-Martín S, et al. Correlated inter-domain motions in adenylate kinase. PLoS Comput. Biol. 2014;10:2. doi: 10.1371/journal.pcbi.1003721. PubMed DOI PMC
Ratnikov BI, et al. Basis for substrate recognition and distinction by matrix metalloproteinases. Proc. Natl. Acad. Sci. 2014;111:E4148–E4155. doi: 10.1073/pnas.1406134111. PubMed DOI PMC
Piccard H, Van den Steen PE, Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J. Leukoc. Biol. 2007;81:870–892. doi: 10.1189/jlb.1006629. PubMed DOI
Singh W, Fields GB, Christov CZ, Karabencheva-Christova TG. Importance of the linker region in matrix metalloproteinase-1 domain interactions. RSC Adv. 2016;6:23223–23232. doi: 10.1039/C6RA03033E. PubMed DOI PMC
Rodríguez D, Morrison CJ, Overall CM. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta Mol. Cell Res. 2010;1803:39–54. doi: 10.1016/j.bbamcr.2009.09.015. PubMed DOI
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007;8:221–233. doi: 10.1038/nrm2125. PubMed DOI PMC
Jackson BC, Nebert DW, Vasiliou V. Update of human and mouse matrix metalloproteinase families. Human Genom. 2010;4:194. doi: 10.1186/1479-7364-4-3-194. PubMed DOI PMC
Manka SW, et al. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc. Natl. Acad. Sci. 2012;109:12461–12466. doi: 10.1073/pnas.1204991109. PubMed DOI PMC
Kumar L, Colomb W, Czerski J, Cox CR, Sarkar SK. Efficient protease based purification of recombinant matrix metalloprotease-1 in E. coli. Protein Exp. Purif. 2018;148:59–67. doi: 10.1016/j.pep.2018.04.001. PubMed DOI
Karabencheva-Christova TG, Christov CZ, Fields GB. Conformational dynamics of matrix metalloproteinase-1 triple-helical peptide complexes. J. Phys. Chem. B. 2017;2:5316–5326. PubMed
Fields GB. Interstitial collagen catabolism. J. Biol. Chem. 2013;288:8785–8793. doi: 10.1074/jbc.R113.451211. PubMed DOI PMC
Bertini I, et al. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. J. Am. Chem. Soc. 2012;134:2100–2110. doi: 10.1021/ja208338j. PubMed DOI PMC
Chung LD, et al. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004;23:3020–3030. doi: 10.1038/sj.emboj.7600318. PubMed DOI PMC
Lauer-Fields JL, Juska D, Fields GB. Matrix metalloproteinases and collagen catabolism. Biopolymers. 2002;66:19–32. doi: 10.1002/bip.10201. PubMed DOI
Salsas-Escat R, Nerenberg PS, Stultz CM. Cleavage site specificity and conformational selection in type I collagen degradation. Biochemistry. 2010;49:4147–4158. doi: 10.1021/bi9021473. PubMed DOI
Nerenberg PS, Stultz CM. Differential unfolding of alpha 1 and alpha 2 chains in type I collagen and collagenolysis. J. Mol. Biol. 2008;382:246–256. doi: 10.1016/j.jmb.2008.07.009. PubMed DOI
Nerenberg PS, Salsas-Escat R, Stultz CM. Do collagenases unwind triple-helical collagen before peptide bond hydrolysis? Reinterpreting experimental observations with mathematical models. Proteins Struct. Functi. Bioinform. 2008;70:1154–1161. doi: 10.1002/prot.21687. PubMed DOI
Kumar L, et al. Allosteric communications between domains modulate the activity of matrix metalloprotease-1. Biophys. J . 2020;119:360–374. doi: 10.1016/j.bpj.2020.06.010. PubMed DOI PMC
Weisel JW, Litvinov RI. Fibrous Proteins: Structures and Mechanisms. Berlin: Springer; 2017. pp. 405–456.
Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003;55:1531–1546. doi: 10.1016/j.addr.2003.08.002. PubMed DOI
Dela Peña I, Borlongan C, Shen G, Davis W. Strategies to extend thrombolytic time window for ischemic stroke treatment: an unmet clinical need. J. Stroke. 2017;19:50. doi: 10.5853/jos.2016.01515. PubMed DOI PMC
Rijken D, Lijnen H. New insights into the molecular mechanisms of the fibrinolytic system. J. Thromb. Haemost. 2009;7:4–13. doi: 10.1111/j.1538-7836.2008.03220.x. PubMed DOI
Lund LR, et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J. 1999;18:4645–4656. doi: 10.1093/emboj/18.17.4645. PubMed DOI PMC
Saito S, et al. Role of matrix metalloproteinases 1, 2, and 9 and tissue inhibitor of matrix metalloproteinase-1 in chronic venous insufficiency. J. Vasc. Surg. 2001;34:930–937. doi: 10.1067/mva.2001.119503. PubMed DOI
Asahi M, et al. Role for matrix metalloproteinase 9 after focal cerebral ischemia, effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow Metab. 2000;20:1681–1689. doi: 10.1097/00004647-200012000-00007. PubMed DOI
Fujimura M, et al. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res. 1999;842:92–100. doi: 10.1016/S0006-8993(99)01843-0. PubMed DOI
Koshiba T, et al. Detection of matrix metalloproteinase activity in human pancreatic cancer. Surg. Today Jpn. J. Surg. 1997;27:302–304. doi: 10.1007/BF00941802. PubMed DOI
Hanemaaijer R, Visser H, Konttinen YT, Koolwijk P, Verheijen JH. A novel and simple immunocapture assay for determination of gelatinase-B (MMP-9) activities in biological fluids: Saliva from patients with Sjogren's syndrome contain increased latent and active gelatinase-B levels. Matrix Biol. 1998;17:657–665. doi: 10.1016/S0945-053X(98)90116-0. PubMed DOI
Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapiere CM. Activated forms of MMP(2) and MMP(9) in abdominal aortic aneurysms. J. Vasc. Surg. 1996;24:127–133. doi: 10.1016/S0741-5214(96)70153-2. PubMed DOI
Bini A, Itoh Y, Kudryk BJ, Nagase H. Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): hydrolysis of the γ Gly 404−Ala 405 peptide bond. Biochemistry. 1996;35:13056–13063. doi: 10.1021/bi960730c. PubMed DOI
Lelongt B, et al. matrix metalloproteinase 9 protects mice from anti-glomerular basement membrane nephritis through its fibrinolytic activity. J. Exp. Med. 2001;193:793–802. doi: 10.1084/jem.193.7.793. PubMed DOI PMC
Hotary KB, et al. Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP–dependent and–independent processes. J. Exp. Med. 2002;195:295–308. doi: 10.1084/jem.20010815. PubMed DOI PMC
Lijnen H. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Moscow) 2002;67:92–98. doi: 10.1023/A:1013908332232. PubMed DOI
Dittmore A, et al. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling. Proc. Natl. Acad. Sci. 2016;2:8436–8441. doi: 10.1073/pnas.1523228113. PubMed DOI PMC
Sarkar SK, Marmer B, Goldberg G, Neuman KC. Single-molecule tracking of collagenase on native type I collagen fibrils reveals degradation mechanism. Curr. Biol. 2012;22:1047–1056. doi: 10.1016/j.cub.2012.04.012. PubMed DOI PMC
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS ONE. 2019;14:e0210218. doi: 10.1371/journal.pone.0210218. PubMed DOI PMC
Merchant KA, Best RB, Louis JM, Gopich IV, Eaton WA. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc. Natl. Acad. Sci. 2007;104:1528–1533. doi: 10.1073/pnas.0607097104. PubMed DOI PMC
Best RB, et al. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc. Natl. Acad. Sci. 2007;104:18964–18969. doi: 10.1073/pnas.0709567104. PubMed DOI PMC
Stennett EM, Ciuba MA, Levitus M. Photophysical processes in single molecule organic fluorescent probes. Chem. Soc. Rev. 2014;43:1057–1075. doi: 10.1039/C3CS60211G. PubMed DOI
Cordes T, Vogelsang J, Tinnefeld P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 2009;131:5018–5019. doi: 10.1021/ja809117z. PubMed DOI
Rasnik I, McKinney SA, Ha T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods. 2006;3:891. doi: 10.1038/nmeth934. PubMed DOI
Kochevar IE, Redmond RW. Methods in Enzymology. Amsterdam: Elsevier; 2000. pp. 20–28. PubMed
Levitus M, Ranjit S. Cyanine dyes in biophysical research: The photophysics of polymethine fluorescent dyes in biomolecular environments. Q. Rev. Biophys. 2011;44:123–151. doi: 10.1017/S0033583510000247. PubMed DOI
Zhuang X, et al. A single-molecule study of RNA catalysis and folding. Science. 2000;288:2048–2051. doi: 10.1126/science.288.5473.2048. PubMed DOI
Dormán G, et al. Matrix metalloproteinase inhibitors. Drugs. 2010;70:949–964. doi: 10.2165/11318390-000000000-00000. PubMed DOI
Murphy G, Reynolds J, Bretz U, Baggiolini M. Partial purification of collagenase and gelatinase from human polymorphonuclear leucocytes. Analysis of their actions on soluble and insoluble collagens. Biochem. J. 1982;203:209–221. doi: 10.1042/bj2030209. PubMed DOI PMC
Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology. 2013;28:391–403. doi: 10.1152/physiol.00029.2013. PubMed DOI PMC
Goldberg GI, Strongin A, Collier I, Genrich L, Marmer B. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 1992;267:4583–4591. PubMed
Bini A, Wu D, Schnuer J, Kudryk BJ. Characterization of stromelysin 1 (MMP-3), matrilysin (MMP-7), and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin (ogen) fragments D-dimer and D-like monomer: NH2-terminal sequences of late-stage digest fragments. Biochemistry. 1999;38:13928–13936. doi: 10.1021/bi991096g. PubMed DOI
Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 2006;106:1624–1671. doi: 10.1021/cr040421p. PubMed DOI
Wertheim G, Butler M, West K, Buchanan D. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 1974;45:1369–1371. doi: 10.1063/1.1686503. DOI
Shoulders MD, Raines RT. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Eyal E, Lum G, Bahar I. The anisotropic network model web server at 2015 (ANM 2.0) Bioinformatics. 2015;31:1487–1489. doi: 10.1093/bioinformatics/btu847. PubMed DOI PMC
Kozakov D, et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017;12:255–278. doi: 10.1038/nprot.2016.169. PubMed DOI PMC
Gårdlund B, Hessel B, Blombäck B, Marguerie G, Murano G. Primary structure of human fibrinogen: Characterization of disulfide-containing cyanogen-bromide fragments. Eur. J. Biochem. 1977;77:595–610. doi: 10.1111/j.1432-1033.1977.tb11704.x. PubMed DOI
Blombäck B, Blombäck M. The molecular structure of fibrinogen. Ann. N. Y. Acad. Sci. 1972;202:77–97. doi: 10.1111/j.1749-6632.1972.tb16323.x. PubMed DOI
Dittmore A, et al. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling. Proc. Natl. Acad. Sci. 2016;2:2. PubMed PMC
Lai VK, et al. Microstructural and mechanical differences between digested collagen–fibrin co-gels and pure collagen and fibrin gels. Acta Biomater. 2012;8:4031–4042. doi: 10.1016/j.actbio.2012.07.010. PubMed DOI PMC
Bain BJ. Diagnosis from the blood smear. N. Engl. J. Med. 2005;353:498–507. doi: 10.1056/NEJMra043442. PubMed DOI
Czerski J, Colomb W, Cannataro F, Sarkar S. Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra. J. Microsc. 2018;270:261–271. doi: 10.1111/jmi.12679. PubMed DOI
Colomb W, Czerski J, Sau J, Sarkar S. Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers. J. Microsc. 2017;266:298–306. doi: 10.1111/jmi.12539. PubMed DOI
Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009;48:3877–3886. doi: 10.1021/bi802205g. PubMed DOI
Everse SJ, Spraggon G, Veerapandian L, Riley M, Doolittle RF. Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry. 1998;37:8637–8642. doi: 10.1021/bi9804129. PubMed DOI
Shindyalov IN, Bourne PE. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 1998;11:739–747. doi: 10.1093/protein/11.9.739. PubMed DOI
Schrodinger L. The PyMOL Molecular Graphics System, Version 1.8. New York: Schrodinger LLC; 2015.