Allosteric Communications between Domains Modulate the Activity of Matrix Metalloprotease-1
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R15 GM137295
NIGMS NIH HHS - United States
PubMed
32585130
PubMed Central
PMC7376139
DOI
10.1016/j.bpj.2020.06.010
PII: S0006-3495(20)30484-7
Knihovny.cz E-zdroje
- MeSH
- katalytická doména MeSH
- kinetika MeSH
- matrixová metaloproteinasa 1 * genetika metabolismus MeSH
- proteiny MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- matrixová metaloproteinasa 1 * MeSH
- proteiny MeSH
An understanding of the structure-dynamics relationship is essential for understanding how a protein works. Prior research has shown that the activity of a protein correlates with intradomain dynamics occurring at picosecond to millisecond timescales. However, the correlation between interdomain dynamics and the function of a protein is poorly understood. Here, we show that communications between the catalytic and hemopexin domains of matrix metalloprotease-1 (MMP1) on type 1 collagen fibrils correlate with its activity. Using single-molecule Förster resonance energy transfer, we identified functionally relevant open conformations in which the two MMP1 domains are well separated, which were significantly absent for catalytically inactive point mutant (E219Q) of MMP1 and could be modulated by an inhibitor or an enhancer of activity. The observed relevance of open conformations resolves the debate about the roles of open and closed MMP1 structures in function. We fitted the histograms of single-molecule Förster resonance energy transfer values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We used a two-state Poisson process to describe the dynamics and calculate the kinetic rates from the fit parameters. All-atom and coarse-grained simulations reproduced some of the experimental features and revealed substrate-dependent MMP1 dynamics. Our results suggest that an interdomain separation facilitates opening up the catalytic pocket so that the collagen chains come closer to the MMP1 active site. Coordination of functional conformations at different parts of MMP1 occurs via allosteric communications that can take place via interactions mediated by collagen even if the linker between the domains is absent. Modeling dynamics as a Poisson process enables connecting the picosecond timescales of molecular dynamics simulations with the millisecond timescales of single-molecule measurements. Water-soluble MMP1 interacting with water-insoluble collagen fibrils poses challenges for biochemical studies that the single-molecule tracking can overcome for other insoluble substrates. Interdomain communications are likely important for multidomain proteins.
Department of Physics Colorado School of Mines Golden Colorado
Nuffield Department of Clinical Neurosciences University of Oxford Oxford United Kingdom
Zobrazit více v PubMed
Karplus M. Role of conformation transitions in adenylate kinase. Proc. Natl. Acad. Sci. USA. 2010;107:E71–E72. PubMed PMC
Pisliakov A.V., Cao J., Warshel A. Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc. Natl. Acad. Sci. USA. 2009;106:17359–17364. PubMed PMC
Henzler-Wildman K.A., Lei M., Kern D. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature. 2007;450:913–916. PubMed
Chung L., Dinakarpandian D., Nagase H. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004;23:3020–3030. PubMed PMC
Page-McCaw A., Ewald A.J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007;8:221–233. PubMed PMC
Jackson B.C., Nebert D.W., Vasiliou V. Update of human and mouse matrix metalloproteinase families. Hum. Genomics. 2010;4:194–201. PubMed PMC
Ratnikov B.I., Cieplak P., Smith J.W. Basis for substrate recognition and distinction by matrix metalloproteinases. Proc. Natl. Acad. Sci. USA. 2014;111:E4148–E4155. PubMed PMC
Gunasekaran K., Ma B., Nussinov R. Is allostery an intrinsic property of all dynamic proteins? Proteins. 2004;57:433–443. PubMed
Kadler K.E. Fell Muir Lecture: collagen fibril formation in vitro and in vivo. Int. J. Exp. Pathol. 2017;98:4–16. PubMed PMC
Nerenberg P.S., Salsas-Escat R., Stultz C.M. Do collagenases unwind triple-helical collagen before peptide bond hydrolysis? Reinterpreting experimental observations with mathematical models. Proteins. 2008;70:1154–1161. PubMed
Leikina E., Mertts M.V., Leikin S. Type I collagen is thermally unstable at body temperature. Proc. Natl. Acad. Sci. USA. 2002;99:1314–1318. PubMed PMC
Manka S.W., Carafoli F., Nagase H. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc. Natl. Acad. Sci. USA. 2012;109:12461–12466. PubMed PMC
Karabencheva-Christova T.G., Christov C.Z., Fields G.B. Conformational dynamics of matrix metalloproteinase-1 triple-helical peptide complexes. J Phys. Chem. B. 2018;122:5316–5326. PubMed
Manka S.W., Bihan D., Farndale R.W. Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Sci. Rep. 2019;9:18785. PubMed PMC
Bertini I., Fragai M., Fields G.B. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. J. Am. Chem. Soc. 2012;134:2100–2110. PubMed PMC
Cerofolini L., Fields G.B., Teixeira J.M. Examination of matrix metalloproteinase-1 in solution: a preference for the pre-collagenolysis state. J. Biol. Chem. 2013;288:30659–30671. PubMed PMC
Arnold L.H., Butt L.E., Pickford A.R. The interface between catalytic and hemopexin domains in matrix metalloproteinase-1 conceals a collagen binding exosite. J. Biol. Chem. 2011;286:45073–45082. PubMed PMC
Dittmore A., Silver J., Neuman K.C. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling. Proc. Natl. Acad. Sci. USA. 2016;113:8436–8441. PubMed PMC
Sarkar S.K., Marmer B., Neuman K.C. Single-molecule tracking of collagenase on native type I collagen fibrils reveals degradation mechanism. Curr. Biol. 2012;22:1047–1056. PubMed PMC
Perumal S., Antipova O., Orgel J.P.R.O. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. USA. 2008;105:2824–2829. PubMed PMC
Saffarian S., Collier I.E., Goldberg G. Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science. 2004;306:108–111. PubMed
Greenwald R.A., Golub L.M., Sorsa T. In vitro sensitivity of the three mammalian collagenases to tetracycline inhibition: relationship to bone and cartilage degradation. Bone. 1998;22:33–38. PubMed
Golub L.M., Ramamurthy N., Perry H. Tetracyclines inhibit tissue collagenase activity. A new mechanism in the treatment of periodontal disease. J. Periodontal Res. 1984;19:651–655. PubMed
Goldberg G.I., Strongin A., Marmer B.L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 1992;267:4583–4591. PubMed
Messens J., Collet J.-F. Pathways of disulfide bond formation in Escherichia coli. Int. J. Biochem. Cell Biol. 2006;38:1050–1062. PubMed
Rowsell S., Hawtin P., Pauptit R.A. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 2002;319:173–181. PubMed
Kumar L., Colomb W., Sarkar S.K. Efficient protease based purification of recombinant matrix metalloprotease-1 in E. coli. Protein Expr. Purif. 2018;148:59–67. PubMed
Stennett E.M., Ciuba M.A., Levitus M. Photophysical processes in single molecule organic fluorescent probes. Chem. Soc. Rev. 2014;43:1057–1075. PubMed
Cordes T., Vogelsang J., Tinnefeld P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 2009;131:5018–5019. PubMed
Rasnik I., McKinney S.A., Ha T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods. 2006;3:891–893. PubMed
Kochevar I.E., Redmond R.W. Photosensitized production of singlet oxygen. Methods Enzymol. 2000;319:20–28. PubMed
Best R.B., Merchant K.A., Eaton W.A. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc. Natl. Acad. Sci. USA. 2007;104:18964–18969. PubMed PMC
Levitus M., Ranjit S. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Q. Rev. Biophys. 2011;44:123–151. PubMed
Merchant K.A., Best R.B., Eaton W.A. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc. Natl. Acad. Sci. USA. 2007;104:1528–1533. PubMed PMC
Abraham M.J., Murtola T., Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.
Hess B., Bekker H., Fraaije J.G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. PubMed
Nash A., Birch H.L., de Leeuw N.H. Mapping intermolecular interactions and active site conformations: from human MMP-1 crystal structure to molecular dynamics free energy calculations. J. Biomol. Struct. Dyn. 2017;35:564–573. PubMed
Collier T.A., Nash A., de Leeuw N.H. Intra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: a molecular dynamics simulation study. Biophys. Chem. 2016;218:42–46. PubMed PMC
Collier T.A., Nash A., de Leeuw N.H. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: a thermodynamic study. Matrix Biol. 2015;48:78–88. PubMed PMC
Darden T., York D., Pedersen L. Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.
Hoover W.G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 1985;31:1695–1697. PubMed
Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.
Eyal E., Yang L.-W., Bahar I. Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics. 2006;22:2619–2627. PubMed
Isin B., Tirupula K.C., Bahar I. Identification of motions in membrane proteins by elastic network models and their experimental validation. Methods Mol. Biol. 2012;914:285–317. PubMed PMC
Eyal E., Lum G., Bahar I. The anisotropic network model web server at 2015 (ANM 2.0) Bioinformatics. 2015;31:1487–1489. PubMed PMC
Atilgan A.R., Durell S.R., Bahar I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 2001;80:505–515. PubMed PMC
Haugland R.P. Molecular Probes Inc; Eugene, OR: 2002. Handbook of Fluorescent Probes and Research Products.
Neumann U., Kubota H., Leppert D. Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal. Biochem. 2004;328:166–173. PubMed
Kamerlin S.C., Warshel A. Reply to Karplus: conformational dynamics have no role in the chemical step. Proc. Natl. Acad. Sci. USA. 2010;107:E72.
Patterson M.L., Atkinson S.J., Murphy G. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett. 2001;503:158–162. PubMed
Saito S., Trovato M.J., Pappas P.J. Role of matrix metalloproteinases 1, 2, and 9 and tissue inhibitor of matrix metalloproteinase-1 in chronic venous insufficiency. J. Vasc. Surg. 2001;34:930–938. PubMed
Asahi M., Asahi K., Lo E.H. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow Metab. 2000;20:1681–1689. PubMed
Fujimura M., Gasche Y., Chan P.H. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res. 1999;842:92–100. PubMed
Hanemaaijer R., Visser H., Verheijen J.H. A novel and simple immunocapture assay for determination of gelatinase-B (MMP-9) activities in biological fluids: saliva from patients with Sjögren’s syndrome contain increased latent and active gelatinase-B levels. Matrix Biol. 1998;17:657–665. PubMed
Koshiba T., Hosotani R., Imamura M. Detection of matrix metalloproteinase activity in human pancreatic cancer. Surg. Today. 1997;27:302–304. PubMed
Sakalihasan N., Delvenne P., Lapière C.M. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 1996;24:127–133. PubMed
Powell B., Malaspina D.C., Dhaher Y. Effect of collagenase-gelatinase ratio on the mechanical properties of a collagen fibril: a combined Monte Carlo-molecular dynamics study. Biomech. Model. Mechanobiol. 2019;18:1809–1819. PubMed PMC
Jarymowycz V.A., Stone M.J. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 2006;106:1624–1671. PubMed
Singh W., Fields G.B., Karabencheva-Christova T.G. Importance of the linker region in matrix metalloproteinase-1 domain interactions. RSC Advances. 2016;6:23223–23232. PubMed PMC
Piccard H., Van den Steen P.E., Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J. Leukoc. Biol. 2007;81:870–892. PubMed
Overall C.M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol. 2002;22:51–86. PubMed
Clark I.M., Cawston T.E. Fragments of human fibroblast collagenase. Purification and characterization. Biochem. J. 1989;263:201–206. PubMed PMC
Sarkar S.K. Morgan & Claypool Publishers; San Rafael, CA: 2016. Single Molecule Biophysics and Poisson Process Approach to Statistical Mechanics.
Zumbusch A., Fleury L., Orrit M. Probing individual two-level systems in a polymer by correlation of single molecule fluorescence. Phys. Rev. Lett. 1993;70:3584–3587. PubMed
Wang J., Xu L., Wang E. Exploring the origin of power law distribution in single-molecule conformation dynamics: energy landscape perspectives. Chem. Phys. Lett. 2008;463:405–409.
Tang J., Marcus R.A. Chain dynamics and power-law distance fluctuations of single-molecule systems. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006;73:022102. PubMed
Maisuradze G.G., Liwo A., Scheraga H.A. Principal component analysis for protein folding dynamics. J. Mol. Biol. 2009;385:312–329. PubMed PMC
Koshland D.E., Jr. The key–lock theory and the induced fit theory. Angew. Chem. Int.Engl. 1995;33:2375–2378.
Koshland D.E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA. 1958;44:98–104. PubMed PMC
Monod J., Wyman J., Changeux J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 1965;12:88–118. PubMed
Boehr D.D., Nussinov R., Wright P.E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 2009;5:789–796. PubMed PMC
Zwanzig R. Rate processes with dynamical disorder. Acc. Chem. Res. 1990;23:148–152.
Desiraju G.R. Cryptic crystallography. Nat. Mater. 2002;1:77–79. PubMed
Stanley H., Buldyrev S., Simons M. Long-range power-law correlations in condensed matter physics and biophysics. Physica A. 1993;200:4–24.
Buldyrev S.V. Power law correlations in DNA sequences. In: Koonin E.V., Wolf Y., Karev G., editors. Power Laws, Scale-Free Networks and Genome Biology. Springer; 2006. pp. 123–164.
Grau-Carles P. Long-range power-law correlations in stock returns. Physica A. 2001;299:521–527.
Stanley H., Buldyrev S., Simons M. Scaling concepts and complex fluids: long-range power-law correlations in DNA. Le Journal de Physique IV. 1993;3:C1-15–C1-26.
Luscombe N.M., Qian J., Gerstein M. The dominance of the population by a selected few: power-law behaviour applies to a wide variety of genomic properties. Genome Biol. 2002;3 RESEARCH0040. PubMed PMC
Wertheim G., Butler M., Buchanan D. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 1974;45:1369–1371.
Colomb W., Czerski J., Sarkar S.K. Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers. J. Microsc. 2017;266:298–306. PubMed
Chapeau-Blondeau F. Autocorrelation versus entropy-based autoinformation for measuring dependence in random signal. Physica A. 2007;380:1–18.
Bertini I., Fragai M., Svergun D.I. Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1) J. Biol. Chem. 2009;284:12821–12828. PubMed PMC