Allosteric Communications between Domains Modulate the Activity of Matrix Metalloprotease-1

. 2020 Jul 21 ; 119 (2) : 360-374. [epub] 20200617

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32585130

Grantová podpora
R15 GM137295 NIGMS NIH HHS - United States

Odkazy

PubMed 32585130
PubMed Central PMC7376139
DOI 10.1016/j.bpj.2020.06.010
PII: S0006-3495(20)30484-7
Knihovny.cz E-zdroje

An understanding of the structure-dynamics relationship is essential for understanding how a protein works. Prior research has shown that the activity of a protein correlates with intradomain dynamics occurring at picosecond to millisecond timescales. However, the correlation between interdomain dynamics and the function of a protein is poorly understood. Here, we show that communications between the catalytic and hemopexin domains of matrix metalloprotease-1 (MMP1) on type 1 collagen fibrils correlate with its activity. Using single-molecule Förster resonance energy transfer, we identified functionally relevant open conformations in which the two MMP1 domains are well separated, which were significantly absent for catalytically inactive point mutant (E219Q) of MMP1 and could be modulated by an inhibitor or an enhancer of activity. The observed relevance of open conformations resolves the debate about the roles of open and closed MMP1 structures in function. We fitted the histograms of single-molecule Förster resonance energy transfer values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We used a two-state Poisson process to describe the dynamics and calculate the kinetic rates from the fit parameters. All-atom and coarse-grained simulations reproduced some of the experimental features and revealed substrate-dependent MMP1 dynamics. Our results suggest that an interdomain separation facilitates opening up the catalytic pocket so that the collagen chains come closer to the MMP1 active site. Coordination of functional conformations at different parts of MMP1 occurs via allosteric communications that can take place via interactions mediated by collagen even if the linker between the domains is absent. Modeling dynamics as a Poisson process enables connecting the picosecond timescales of molecular dynamics simulations with the millisecond timescales of single-molecule measurements. Water-soluble MMP1 interacting with water-insoluble collagen fibrils poses challenges for biochemical studies that the single-molecule tracking can overcome for other insoluble substrates. Interdomain communications are likely important for multidomain proteins.

Zobrazit více v PubMed

Karplus M. Role of conformation transitions in adenylate kinase. Proc. Natl. Acad. Sci. USA. 2010;107:E71–E72. PubMed PMC

Pisliakov A.V., Cao J., Warshel A. Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc. Natl. Acad. Sci. USA. 2009;106:17359–17364. PubMed PMC

Henzler-Wildman K.A., Lei M., Kern D. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature. 2007;450:913–916. PubMed

Chung L., Dinakarpandian D., Nagase H. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004;23:3020–3030. PubMed PMC

Page-McCaw A., Ewald A.J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007;8:221–233. PubMed PMC

Jackson B.C., Nebert D.W., Vasiliou V. Update of human and mouse matrix metalloproteinase families. Hum. Genomics. 2010;4:194–201. PubMed PMC

Ratnikov B.I., Cieplak P., Smith J.W. Basis for substrate recognition and distinction by matrix metalloproteinases. Proc. Natl. Acad. Sci. USA. 2014;111:E4148–E4155. PubMed PMC

Gunasekaran K., Ma B., Nussinov R. Is allostery an intrinsic property of all dynamic proteins? Proteins. 2004;57:433–443. PubMed

Kadler K.E. Fell Muir Lecture: collagen fibril formation in vitro and in vivo. Int. J. Exp. Pathol. 2017;98:4–16. PubMed PMC

Nerenberg P.S., Salsas-Escat R., Stultz C.M. Do collagenases unwind triple-helical collagen before peptide bond hydrolysis? Reinterpreting experimental observations with mathematical models. Proteins. 2008;70:1154–1161. PubMed

Leikina E., Mertts M.V., Leikin S. Type I collagen is thermally unstable at body temperature. Proc. Natl. Acad. Sci. USA. 2002;99:1314–1318. PubMed PMC

Manka S.W., Carafoli F., Nagase H. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc. Natl. Acad. Sci. USA. 2012;109:12461–12466. PubMed PMC

Karabencheva-Christova T.G., Christov C.Z., Fields G.B. Conformational dynamics of matrix metalloproteinase-1 triple-helical peptide complexes. J Phys. Chem. B. 2018;122:5316–5326. PubMed

Manka S.W., Bihan D., Farndale R.W. Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Sci. Rep. 2019;9:18785. PubMed PMC

Bertini I., Fragai M., Fields G.B. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. J. Am. Chem. Soc. 2012;134:2100–2110. PubMed PMC

Cerofolini L., Fields G.B., Teixeira J.M. Examination of matrix metalloproteinase-1 in solution: a preference for the pre-collagenolysis state. J. Biol. Chem. 2013;288:30659–30671. PubMed PMC

Arnold L.H., Butt L.E., Pickford A.R. The interface between catalytic and hemopexin domains in matrix metalloproteinase-1 conceals a collagen binding exosite. J. Biol. Chem. 2011;286:45073–45082. PubMed PMC

Dittmore A., Silver J., Neuman K.C. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling. Proc. Natl. Acad. Sci. USA. 2016;113:8436–8441. PubMed PMC

Sarkar S.K., Marmer B., Neuman K.C. Single-molecule tracking of collagenase on native type I collagen fibrils reveals degradation mechanism. Curr. Biol. 2012;22:1047–1056. PubMed PMC

Perumal S., Antipova O., Orgel J.P.R.O. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. USA. 2008;105:2824–2829. PubMed PMC

Saffarian S., Collier I.E., Goldberg G. Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science. 2004;306:108–111. PubMed

Greenwald R.A., Golub L.M., Sorsa T. In vitro sensitivity of the three mammalian collagenases to tetracycline inhibition: relationship to bone and cartilage degradation. Bone. 1998;22:33–38. PubMed

Golub L.M., Ramamurthy N., Perry H. Tetracyclines inhibit tissue collagenase activity. A new mechanism in the treatment of periodontal disease. J. Periodontal Res. 1984;19:651–655. PubMed

Goldberg G.I., Strongin A., Marmer B.L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 1992;267:4583–4591. PubMed

Messens J., Collet J.-F. Pathways of disulfide bond formation in Escherichia coli. Int. J. Biochem. Cell Biol. 2006;38:1050–1062. PubMed

Rowsell S., Hawtin P., Pauptit R.A. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 2002;319:173–181. PubMed

Kumar L., Colomb W., Sarkar S.K. Efficient protease based purification of recombinant matrix metalloprotease-1 in E. coli. Protein Expr. Purif. 2018;148:59–67. PubMed

Stennett E.M., Ciuba M.A., Levitus M. Photophysical processes in single molecule organic fluorescent probes. Chem. Soc. Rev. 2014;43:1057–1075. PubMed

Cordes T., Vogelsang J., Tinnefeld P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 2009;131:5018–5019. PubMed

Rasnik I., McKinney S.A., Ha T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods. 2006;3:891–893. PubMed

Kochevar I.E., Redmond R.W. Photosensitized production of singlet oxygen. Methods Enzymol. 2000;319:20–28. PubMed

Best R.B., Merchant K.A., Eaton W.A. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc. Natl. Acad. Sci. USA. 2007;104:18964–18969. PubMed PMC

Levitus M., Ranjit S. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Q. Rev. Biophys. 2011;44:123–151. PubMed

Merchant K.A., Best R.B., Eaton W.A. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc. Natl. Acad. Sci. USA. 2007;104:1528–1533. PubMed PMC

Abraham M.J., Murtola T., Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.

Hess B., Bekker H., Fraaije J.G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. PubMed

Nash A., Birch H.L., de Leeuw N.H. Mapping intermolecular interactions and active site conformations: from human MMP-1 crystal structure to molecular dynamics free energy calculations. J. Biomol. Struct. Dyn. 2017;35:564–573. PubMed

Collier T.A., Nash A., de Leeuw N.H. Intra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: a molecular dynamics simulation study. Biophys. Chem. 2016;218:42–46. PubMed PMC

Collier T.A., Nash A., de Leeuw N.H. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: a thermodynamic study. Matrix Biol. 2015;48:78–88. PubMed PMC

Darden T., York D., Pedersen L. Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.

Hoover W.G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 1985;31:1695–1697. PubMed

Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.

Eyal E., Yang L.-W., Bahar I. Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics. 2006;22:2619–2627. PubMed

Isin B., Tirupula K.C., Bahar I. Identification of motions in membrane proteins by elastic network models and their experimental validation. Methods Mol. Biol. 2012;914:285–317. PubMed PMC

Eyal E., Lum G., Bahar I. The anisotropic network model web server at 2015 (ANM 2.0) Bioinformatics. 2015;31:1487–1489. PubMed PMC

Atilgan A.R., Durell S.R., Bahar I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 2001;80:505–515. PubMed PMC

Haugland R.P. Molecular Probes Inc; Eugene, OR: 2002. Handbook of Fluorescent Probes and Research Products.

Neumann U., Kubota H., Leppert D. Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal. Biochem. 2004;328:166–173. PubMed

Kamerlin S.C., Warshel A. Reply to Karplus: conformational dynamics have no role in the chemical step. Proc. Natl. Acad. Sci. USA. 2010;107:E72.

Patterson M.L., Atkinson S.J., Murphy G. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett. 2001;503:158–162. PubMed

Saito S., Trovato M.J., Pappas P.J. Role of matrix metalloproteinases 1, 2, and 9 and tissue inhibitor of matrix metalloproteinase-1 in chronic venous insufficiency. J. Vasc. Surg. 2001;34:930–938. PubMed

Asahi M., Asahi K., Lo E.H. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow Metab. 2000;20:1681–1689. PubMed

Fujimura M., Gasche Y., Chan P.H. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res. 1999;842:92–100. PubMed

Hanemaaijer R., Visser H., Verheijen J.H. A novel and simple immunocapture assay for determination of gelatinase-B (MMP-9) activities in biological fluids: saliva from patients with Sjögren’s syndrome contain increased latent and active gelatinase-B levels. Matrix Biol. 1998;17:657–665. PubMed

Koshiba T., Hosotani R., Imamura M. Detection of matrix metalloproteinase activity in human pancreatic cancer. Surg. Today. 1997;27:302–304. PubMed

Sakalihasan N., Delvenne P., Lapière C.M. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 1996;24:127–133. PubMed

Powell B., Malaspina D.C., Dhaher Y. Effect of collagenase-gelatinase ratio on the mechanical properties of a collagen fibril: a combined Monte Carlo-molecular dynamics study. Biomech. Model. Mechanobiol. 2019;18:1809–1819. PubMed PMC

Jarymowycz V.A., Stone M.J. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 2006;106:1624–1671. PubMed

Singh W., Fields G.B., Karabencheva-Christova T.G. Importance of the linker region in matrix metalloproteinase-1 domain interactions. RSC Advances. 2016;6:23223–23232. PubMed PMC

Piccard H., Van den Steen P.E., Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J. Leukoc. Biol. 2007;81:870–892. PubMed

Overall C.M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol. 2002;22:51–86. PubMed

Clark I.M., Cawston T.E. Fragments of human fibroblast collagenase. Purification and characterization. Biochem. J. 1989;263:201–206. PubMed PMC

Sarkar S.K. Morgan & Claypool Publishers; San Rafael, CA: 2016. Single Molecule Biophysics and Poisson Process Approach to Statistical Mechanics.

Zumbusch A., Fleury L., Orrit M. Probing individual two-level systems in a polymer by correlation of single molecule fluorescence. Phys. Rev. Lett. 1993;70:3584–3587. PubMed

Wang J., Xu L., Wang E. Exploring the origin of power law distribution in single-molecule conformation dynamics: energy landscape perspectives. Chem. Phys. Lett. 2008;463:405–409.

Tang J., Marcus R.A. Chain dynamics and power-law distance fluctuations of single-molecule systems. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006;73:022102. PubMed

Maisuradze G.G., Liwo A., Scheraga H.A. Principal component analysis for protein folding dynamics. J. Mol. Biol. 2009;385:312–329. PubMed PMC

Koshland D.E., Jr. The key–lock theory and the induced fit theory. Angew. Chem. Int.Engl. 1995;33:2375–2378.

Koshland D.E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA. 1958;44:98–104. PubMed PMC

Monod J., Wyman J., Changeux J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 1965;12:88–118. PubMed

Boehr D.D., Nussinov R., Wright P.E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 2009;5:789–796. PubMed PMC

Zwanzig R. Rate processes with dynamical disorder. Acc. Chem. Res. 1990;23:148–152.

Desiraju G.R. Cryptic crystallography. Nat. Mater. 2002;1:77–79. PubMed

Stanley H., Buldyrev S., Simons M. Long-range power-law correlations in condensed matter physics and biophysics. Physica A. 1993;200:4–24.

Buldyrev S.V. Power law correlations in DNA sequences. In: Koonin E.V., Wolf Y., Karev G., editors. Power Laws, Scale-Free Networks and Genome Biology. Springer; 2006. pp. 123–164.

Grau-Carles P. Long-range power-law correlations in stock returns. Physica A. 2001;299:521–527.

Stanley H., Buldyrev S., Simons M. Scaling concepts and complex fluids: long-range power-law correlations in DNA. Le Journal de Physique IV. 1993;3:C1-15–C1-26.

Luscombe N.M., Qian J., Gerstein M. The dominance of the population by a selected few: power-law behaviour applies to a wide variety of genomic properties. Genome Biol. 2002;3 RESEARCH0040. PubMed PMC

Wertheim G., Butler M., Buchanan D. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 1974;45:1369–1371.

Colomb W., Czerski J., Sarkar S.K. Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers. J. Microsc. 2017;266:298–306. PubMed

Chapeau-Blondeau F. Autocorrelation versus entropy-based autoinformation for measuring dependence in random signal. Physica A. 2007;380:1–18.

Bertini I., Fragai M., Svergun D.I. Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1) J. Biol. Chem. 2009;284:12821–12828. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Activity-dependent interdomain dynamics of matrix metalloprotease-1 on fibrin

. 2020 Nov 26 ; 10 (1) : 20615. [epub] 20201126

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...