CKS1 Germ Line Exclusion Is Essential for the Transition from Meiosis to Early Embryonic Development
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HD049539
NICHD NIH HHS - United States
PubMed
30988159
PubMed Central
PMC6580707
DOI
10.1128/mcb.00590-18
PII: MCB.00590-18
Knihovny.cz E-zdroje
- Klíčová slova
- CKS, cyclin-dependent kinases, developmental biology, meiosis,
- MeSH
- embryonální vývoj * MeSH
- faktor podporující zrání metabolismus MeSH
- genový knockin MeSH
- kinasy CDC2-CDC28 genetika metabolismus MeSH
- meióza MeSH
- mezotelin MeSH
- myši knockoutované MeSH
- myši MeSH
- oocyty cytologie metabolismus MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Cks1 protein, mouse MeSH Prohlížeč
- Cks2 protein, mouse MeSH Prohlížeč
- faktor podporující zrání MeSH
- kinasy CDC2-CDC28 MeSH
- mezotelin MeSH
- Msln protein, mouse MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
Cell division cycle (Cdc) kinase subunit (CKS) proteins bind cyclin-dependent kinases (CDKs) and play important roles in cell division control and development, though their precise molecular functions are not fully understood. Mammals express two closely related paralogs called CKS1 and CKS2, but only CKS2 is expressed in the germ line, indicating that it is solely responsible for regulating CDK functions in meiosis. Using cks2-/- knockout mice, we show that CKS2 is a crucial regulator of maturation-promoting factor (MPF; CDK1-cyclin A/B) activity in meiosis. cks2-/- oocytes display reduced and delayed MPF activity during meiotic progression, leading to defects in germinal vesicle breakdown (GVBD), anaphase-promoting complex/cyclosome (APC/C) activation, and meiotic spindle assembly. cks2-/- germ cells express significantly reduced levels of the MPF components CDK1 and cyclins A1/B1. Additionally, injection of MPF plus CKS2, but not MPF alone, restored normal GVBD in cks2-/- oocytes, demonstrating that GVBD is driven by a CKS2-dependent function of MPF. Moreover, we generated cks2cks1/cks1 knock-in mice and found that CKS1 can compensate for CKS2 in meiosis in vivo, but homozygous embryos arrested development at the 2- to 5-cell stage. Collectively, our results show that CKS2 is a crucial regulator of MPF functions in meiosis and that its paralog, CKS1, must be excluded from the germ line for proper embryonic development.
Zobrazit více v PubMed
Hayles J, Beach D, Durkacz B, Nurse P. 1986. The fission yeast cell cycle control gene cdc2: isolation of a sequence suc1 that suppresses cdc2 mutant function. Mol Gen Genet 202:291–293. doi:10.1007/BF00331653. PubMed DOI
Hadwiger JA, Wittenberg C, Mendenhall MD, Reed SI. 1989. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex. Mol Cell Biol 9:2034–2041. doi:10.1128/MCB.9.5.2034. PubMed DOI PMC
Reed SI, Hadwiger JA, Richardson HE, Wittenberg C. 1989. Analysis of the Cdc28 protein kinase complex by dosage suppression. J Cell Sci Suppl 12:29–37. PubMed
Richardson HE, Stueland CS, Thomas J, Russell P, Reed SI. 1990. Human cDNAs encoding homologs of the small p34Cdc28/Cdc2-associated protein of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genes Dev 4:1332–1344. doi:10.1101/gad.4.8.1332. PubMed DOI
Tang Y, Reed SI. 1993. The Cdk-associated protein Cks1 functions both in G1 and G2 in Saccharomyces cerevisiae. Genes Dev 7:822–832. doi:10.1101/gad.7.5.822. PubMed DOI
Reynard GJ, Reynolds W, Verma R, Deshaies RJ. 2000. Cks1 is required for G(1) cyclin-cyclin-dependent kinase activity in budding yeast. Mol Cell Biol 20:5858–5864. doi:10.1128/MCB.20.16.5858-5864.2000. PubMed DOI PMC
Moreno S, Hayles J, Nurse P. 1989. Regulation of p34cdc2 protein kinase during mitosis. Cell 58:361–372. doi:10.1016/0092-8674(89)90850-7. PubMed DOI
Patra D, Dunphy WG. 1996. Xe-p9, a Xenopus Suc1/Cks homolog, has multiple essential roles in cell cycle control. Genes Dev 10:1503–1515. doi:10.1101/gad.10.12.1503. PubMed DOI
Bourne Y, Watson MH, Hickey MJ, Holmes W, Rocque W, Reed SI, Tainer JA. 1996. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84:863–874. doi:10.1016/S0092-8674(00)81065-X. PubMed DOI
Patra D, Wang SX, Kumagai A, Dunphy WG. 1999. The Xenopus Suc1/Cks protein promotes the phosphorylation of G(2)/M regulators. J Biol Chem 274:36839–36842. doi:10.1074/jbc.274.52.36839. PubMed DOI
Patra D, Dunphy WG. 1998. Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase-promoting complex at mitosis. Genes Dev 12:2549–2559. doi:10.1101/gad.12.16.2549. PubMed DOI PMC
Morris MC, Kaiser P, Rudyak S, Baskerville C, Watson MH, Reed SI. 2003. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Nature 423:1009–1013. doi:10.1038/nature01720. PubMed DOI
Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW, Reed SI. 2001. A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell 7:639–650. doi:10.1016/S1097-2765(01)00210-6. PubMed DOI
Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A. 2001. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3:321–324. doi:10.1038/35060126. PubMed DOI
Spruck CH, de Miguel MP, Smith APL, Ryan A, Stein P, Schultz RM, Lincoln AJ, Donovan PJ, Reed SI. 2003. Requirement of Cks2 for the first metaphase/anaphase transition of mammalian meiosis. Science 300:647–650. doi:10.1126/science.1084149. PubMed DOI
Martinsson-Ahlzen H-S, Liberal V, Grunenfelder B, Chaves SR, Spruck CH, Reed SI. 2008. Cyclin-dependent kinase-associated proteins Cks1 and Cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Mol Cell Biol 28:5698–5709. doi:10.1128/MCB.01833-07. PubMed DOI PMC
Minshull J, Sun H, Tonks NK, Murray AW. 1994. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79:475–486. doi:10.1016/0092-8674(94)90256-9. PubMed DOI
Kotani S, Tanaka H, Yasuda H, Todokoro K. 1999. Regulation of APC activity by phosphorylation and regulatory factors. J Cell Biol 146:791–800. doi:10.1083/jcb.146.4.791. PubMed DOI PMC
Huang J-Y, Morley G, Li D, Whitaker M. 2007. Cdk1 phosphorylation sites on Cdc27 are required for correct chromosomal localisation and APC/C function in syncytial Drosophila embryos. J Cell Sci 120:1990–1997. doi:10.1242/jcs.006833. PubMed DOI PMC
Brunet S, Pahlavan G, Taylor S, Maro B. 2003. Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes. Reproduction 126:443–450. doi:10.1530/rep.0.1260443. PubMed DOI
Curtis D, Lehmann R, Zamore PD. 1995. Translational regulation in development. Cell 81:171–178. doi:10.1016/0092-8674(95)90325-9. PubMed DOI
Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y, Kohmoto K. 1991. Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development 113:789–795. PubMed
Verlhac MH, Kubiak JZ, Clarke HJ, Maro B. 1994. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 120:1017–1025. PubMed
Adhikari D, Zheng W, Shen Y, Gorre N, Ning Y, Halet G, Kaldis P, Liu K. 2012. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum Mol Genet 21:2476–2484. doi:10.1093/hmg/dds061. PubMed DOI
Adhikari D, Liu K. 2014. The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 382:480–487. doi:10.1016/j.mce.2013.07.027. PubMed DOI
Santamaría D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, Cáceres JF, Dubus P, Malumbres M, Barbacid M. 2007. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448:811–815. doi:10.1038/nature06046. PubMed DOI
Polanski Z, Ledan E, Brunet S, Louvet S, Verlhac MH, Kubiak JZ, Maro B. 1998. Cyclin synthesis controls the progression of meiotic maturation in mouse oocytes. Development 125:4989–4997. PubMed
Yu V, Baskerville C, Grünenfelder B, Reed SI. 2005. A kinase-independent function of Cks1 and Cdk1 in regulation of transcription. Mol Cell 17:145–151. doi:10.1016/j.molcel.2004.11.020. PubMed DOI
Müller GA, Engeland K. 2010. The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription. FEBS J 277:877–893. doi:10.1111/j.1742-4658.2009.07508.x. PubMed DOI
Donovan PJ, Reed SI. 2003. Germline exclusion of Cks1 in the mouse reveals a metaphase I role for Cks proteins in male and female meiosis. Cell Cycle 2:275–276. PubMed
Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P. 2003. Cdk2 knockout mice are viable. Curr Biol 13:1775–1785. doi:10.1016/j.cub.2003.09.024. PubMed DOI
Ortega S, Prieto I, Odajima J, Martín A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M. 2003. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31. doi:10.1038/ng1232. PubMed DOI
Motlík J, Sutovský P, Kalous J, Kubelka M, Moos J, Schultz RM. 1996. Co-culture with pig membrana granulosa cells modulates the activity of cdc2 and MAP kinase in maturing cattle oocytes. Zygote 4:247–256. doi:10.1017/S0967199400003166. PubMed DOI
Tetkova A, Hancova M. 2016. Mouse oocyte isolation, cultivation and RNA microinjection. Bio-protocol 6(3):e1729. doi:10.21769/BioProtoc.1729. DOI