Winter arsenic pollution in 10 forest ecosystems in the mountainous border regions of the Czech Republic

. 2021 Apr ; 28 (13) : 16107-16121. [epub] 20201127

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33247400

Grantová podpora
310470 Česká geologická služba
33800 Česká geologická služba

Odkazy

PubMed 33247400
DOI 10.1007/s11356-020-11738-4
PII: 10.1007/s11356-020-11738-4
Knihovny.cz E-zdroje

Arsenic (As) concentrations and deposition fluxes were measured in snow and rime at 10 mountain-top sites near the borders between the Czech Republic and Austria, Germany, Poland, and Slovakia during three consecutive winter seasons (2009-2011). Our study was performed at a time following several decades of sharply decreasing regional atmospheric pollution and following the 2006 implementation of stricter air quality standards across Europe. Our objective was to compare vertical and horizontal depositions of soluble and insoluble As forms throughout the Czech Republic and define a recent Central European As pollution gradient. Arsenic soluble in weak nitric acid contributed 83 to 85% to the total As deposition, with the remaining 17-15% bound to stable particulate forms. The highest As deposition rates were recorded in the eastern Czech Republic near the borders with Poland and Slovakia. Complementary hydrochemical monitoring in four mountain-slope catchments situated near selected main study sites revealed a further decrease in open-area As deposition by the end of 2018 in the east of the country. In contrast, spruce canopy throughfall flux did not change significantly between 2009-2011 and 2016-2018. The site-specific relative roles of coal-burning-derived and ore-smelting-derived atmospheric As are discussed.

Zobrazit více v PubMed

Ahmad A, Bhattacharya P (2019) Arsenic in drinking water: Is 10 μg/L a safe limit? Curr Pollut Rep 5:1–3 DOI

Ahmad A, van der Wens P, Baken K, de Waal L, Bhattacharya P, Stuyfzand P (2020) Arsenic reduction to <1 μg/L in Dutch drinking water. Environ Int 134:105253 DOI

Bohdálková L, Hruška J (2017) Spatial and temporal trends in winter deposition of Pb, Be, Cu and Zn in selected mountain areas of Central Europe. Beskydy 10:87–98. https://doi.org/10.11118/beskyd201710010087

Bohdalkova L, Novak M, Voldrichova P, Prechova E, Veselovsky F, Erbanova L, Krachler M, Komarek A, Mikova J (2012) Atmospheric deposition of beryllium in Central Europe: comparison of soluble and insoluble fractions in rime and snow across a pollution gradient. Sci Total Environ 439:26–34

Bohdálková L, Novák M, Krachler M, Míková J, Chrastný V, Veselovský F, Voldřichová P, Pacherová P, Komárek A, Přechová E (2020) Cadmium contents of vertically and horizontally deposited winter precipitation in Central Europe: spatial distribution and long-term trends. Environ Pollut 265:114949. https://doi.org/10.1016/j.envpol.2020.114949

Bouška V, Pešek J (1999) Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite. Int J Coal Geol 40:211–235. https://doi.org/10.1016/S0166-5162(98)00070-6 DOI

Buschmann J, Berg M, Stengel C, Winkel L, Sampson ML, Trang PTK, Viet PH (2008) Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ Int 34:756–764. https://doi.org/10.1016/j.envint.2007.12.025 DOI

Buzek F, Cejkova B, Dousova B, Jackova I, Kadlecova R, Lnenickova Z (2013) Mobilization of arsenic from acid deposition - the Elbe River catchment, Czech Republic. Appl Geochem 33:281–293. https://doi.org/10.1016/j.apgeochem.2013.02.022 DOI

Chilvers J, Peterson DC (1987) Global Arsenic Cycling. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium and arsenic in the environment edited by global cycling of arsenic, pp 279–301

Chrastný V, Vaněk A, Teper L, Cabala J, Procházka J, Pechar L, Drahota P, Penížek V, Komárek M, Novák M (2012) Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Environ Monit Assess 184:2517–2536. https://doi.org/10.1007/s10661-011-2135-2 DOI

Cimova N, Novak M, Chrastny V, Curik J, Veselovsky F, Blaha V, Prechova E, Pasava J, Houskova M, Bohdalkova L, Stepanova M, Mikova J, Krachler M, Komarek A (2016) Lead fluxes and 206Pb/207Pb isotope ratios in rime and snow collected at remote mountain-top locations (Czech Republic, Central Europe): patterns and sources. Atmos Environ 143:51–59. https://doi.org/10.1016/j.atmosenv.2016.07.057 DOI

Czech Hydrometeorological Institute (2010) Air pollution in the Czech Republic 2010.  http://portal.chmi.cz/files/portal/docs/uoco/isko/grafroc/groce/gr10e/aobsah.html

Doušová B, Erbanová L, Novák M (2007) Arsenic in atmospheric deposition at the Czech-Polish border: two sampling campaigns 20 years apart. Sci Total Environ 387:185–193. https://doi.org/10.1016/j.scitotenv.2007.06.028 DOI

E-PRTR (European Pollutant Release and Transfer Register) (2020) https://www.eea.europa.eu/themes/air/links/data-sources/european-pollutant-release-and-transfer . Accessed 28 May 2020

Erbanova L, Novak M, Fottova D, Dousova B (2008) Export of arsenic from forested catchments under easing atmospheric pollution. Environ Sci Technol 42:7187–7192. https://doi.org/10.1021/es800467j DOI

EU Council EP (2004) Arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient. Off J Eur Union L23:3–16

European Environmental Agency, EEA (2019) Air quality in Europe — 2019 report.EEA Report No 10/2019, European Environment Agency. https://www.eea.europa.eu/publications/air-quality-in-europe-2019

European Parliament and Council (2008) Directive 2008/50/EC on ambient air quality and cleaner air for Europe. Off J Eur Communities 152:1–43

Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis, Fifth edn. Wiley, Hoboken DOI

Fottová D (1995) Regional evaluation of mass element fluxes: Geomon network of small catchments. Environ Monit Assess 34:215–221. https://doi.org/10.1007/BF00546037 DOI

Gautam S, Patra AK, Sahu SP, Hitch M (2018) Particulate matter pollution in opencast coal mining areas: a threat to human health and environment. Int J Min Reclam Environ 32:75–92. https://doi.org/10.1080/17480930.2016.1218110 DOI

Global Energy Monitor (2020) Global coal plant tracker. Coal Swarm

Groscheová H, Novák M, Havel M, Černý J (1998) Effect of altitude and tree species on δ34S of deposited sulfur (Jezeří Catchment, Czech Republic). In: Biogeochemical investigations at watershed, landscape, and regional scales. Springer, Netherlands, pp 295–303 DOI

Hari V, Rakovec O, Markonis Y, Hanel M, Kumar R (2020) Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-68872-9 DOI

Helliwell RC, Wright RF, Jackson-Blake LA, Ferrier RC, Aherne J, Cosby BJ, Evans CD, Forsius M, Hruska J, Jenkins A, Kram P, Kopáček J, Majer V, Moldan F, Posch M, Potts JM, Rogora M, Schöpp W (2014) Assessing recovery from acidification of European surface waters in the year 2010: evaluation of projections made with the MAGIC model in 1995. Environ Sci Technol 48:13280–13288. https://doi.org/10.1021/es502533c DOI

Hindman EE, Borys RD, DeMott PJ (1983) Hydrometeorological significance of rime ice deposits in the Colorado Rockies. Bull Am Water Res Assoc 19:619–24 DOI

Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363 DOI

Hutton M, Symon C (1986) The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities. Sci Total Environ 57:129–150. https://doi.org/10.1016/0048-9697(86)90018-5 DOI

Keegan T, Hong B, Thornton I et al (2002) Assessment of environmental arsenic levels in Prievidza district. J Expo Anal Environ Epidemiol 12:179–185. https://doi.org/10.1038/sj/jea/7500216 DOI

Kobza J, Geremek M, Dul L (2018) Characteristics of air quality and sources affecting high levels of PM10 and PM2.5 in Poland, Upper Silesia urban area. Environ Monit Assess 190:1–13. https://doi.org/10.1007/s10661-018-6797-x DOI

Kolář T, Čermák P, Oulehle F, Trnka M, Štěpánek P, Cudlín P, Hruška J, Büntgen U, Rybníček M (2015) Pollution control enhanced spruce growth in the “Black Triangle” near the Czech-Polish border. Sci Total Environ 538:703–711. https://doi.org/10.1016/j.scitotenv.2015.08.105 DOI

Komorowicz I, Barałkiewicz D (2016) Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland. Environ Monit Assess 188:1–22. https://doi.org/10.1007/s10661-016-5477-y DOI

Kopáček J, Turek J, Hejzlar J, Šantrůčková H (2009) Canopy leaching of nutrients and metals in a mountain spruce forest. Atmos Environ 43:5443–5453. https://doi.org/10.1016/j.atmosenv.2009.07.031 DOI

Kopáček J, Hejzlar J, Krám P, Oulehle F, Posch M (2016) Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res 103:30–37. https://doi.org/10.1016/j.watres.2016.07.017 DOI

Krám P, Hruška J, Wenner BS, et al (1997) The biogeochemistry of basic cations in two forest catchments with contrasting lithology in the Czech Republic. Biogeochemistry 37:173–202. https://doi.org/10.1023/A:1005742418304 DOI

Krupa SV (2002) Sampling and physico-chemical analysis of precipitation: A review. Environ Pollut 120:565–594. https://doi.org/10.1016/S0269-7491(02)00165-3 DOI

Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, Inc., Upper Saddle River

Majer V, Krám P, Shanley JB (2005) Rapid regional recovery from sulfate and nitrate pollution in streams of the western Czech Republic - comparison to other recovering areas. Environ Pollut 135:17–28. https://doi.org/10.1016/j.envpol.2004.10.009 DOI

Murcott S (2012) Arsenic contamination in the world: an international sourcebook 2012. IWA Publishing, London

Novak M, Erbanova L, Fottova D et al (2011) Behaviour of arsenic in forested catchments following a high-pollution period. Environ Pollut 159:204e211 Contents. https://doi.org/10.1016/j.envpol.2010.09.002

Novák M, Kirchner JW, Fottová D, et al (2005) Isotopic evidence for processes of sulfur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, central Europe). Global Biogeochem Cycles 19. https://doi.org/10.1029/2004GB002396

Novák M, Mitchell MJ, Jačková I, et al (2007) Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in central Europe. Environ Sci Technol 41:703–709. https://doi.org/10.1021/es0610028

Novak M, Sipkova A, Chrastny V, Stepanova M, Voldrichova P, Veselovsky F, Prechova E, Blaha V, Curik J, Farkas J, Erbanova L, Bohdalkova L, Pasava J, Mikova J, Komarek A, Krachler M (2016) Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: using soluble and insoluble particles in snow and rime *. Environ Pollut 218:1135–1146. https://doi.org/10.1016/j.envpol.2016.08.067 DOI

Noyes PD, McElwee MK, Miller HD et al (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986 DOI

Oulehle F, Chuman T, Hruška J, Krám P, McDowell WH, Myška O, Navrátil T, Tesař M (2017) Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry 132:251–272. https://doi.org/10.1007/s10533-017-0298-9 DOI

Pacyna J (1987) Atmospheric emissions of arsenic, cadmium, lead and mercury from high temperature processes in power generation and industry. In: Hutchinson TC, Meema KM (eds) Lead, Mercury, Cadmium and Arsenic in the Environment. Wiley, Hoboken, pp 69–88

Pešek J, Bencko V, Sýkorová I et al (2005) Some trace elements in coal of the Czech Republic, environment and health protection implications. Cent Eur J Public Health 13:153–158

Pinheiro JC, Bates D (2000) Mixed-effects models in S and S-Plus. Springer-Verlag, New York DOI

Prechova E, Sebek O, Strnad L, Novak M, Chrastny V, Stepanova M, Pasava J, Veselovsky F, Curik J, Pacherova P, Bohdalkova L, Houskova M (2020) Temporal changes in mountain slope gradients in the concentrations of pollutants and Pb isotope ratios near the Ostrava conurbation (Upper Silesia, Czech-Polish Border). Water Air Soil Pollut 231:1–14. https://doi.org/10.1007/s11270-020-04615-w

R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

Schmidt CW (2014) Low-dose arsenic in search of a risk threshold. Environ Health Perspect 122. https://doi.org/10.1289/ehp.122-A130

Shotyk W, Krachler M, Aeschbach-Hertig W, Hillier S, Zheng J(J) (2010) Trace elements in recent groundwater of an artesian flow system and comparison with snow: enrichments, depletions, and chemical evolution of the water. J Environ Monit 12:208–217. https://doi.org/10.1039/b909723f DOI

Šlejkovec Z, Kanduč T (2005) Unexpected arsenic compounds in low-rank coals. Environ Sci Technol 39:3450–3454. https://doi.org/10.1021/es0400990 DOI

Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077 DOI

Suchara I, Sucharová J, Holá M (2015) Spatiotemporal changes in atmospheric deposition rates across the Czech Republic estimated in the selected biomonitoring campaigns. Examples of results available for landscape ecology and land use planning. J Landsc Ecol 8:10–28. https://doi.org/10.1515/jlecol-2015-0002 DOI

Suchara I, Sucharová J, Holá M (2017) A quarter century of biomonitoring atmospheric pollution in the Czech Republic. Environ Sci Pollut Res 24:11949–11963. https://doi.org/10.1007/s11356-015-5368-8 DOI

US EPA( Environmental Protection Agency) (1998) Locating and estimating air emissions from sources of arsenic and arsenic compounds. EPA-454/R-98-013. http://www3.epa.gov/ttnchie1/le/arsenic.pdf

Voldrichova P, Chrastny V, Sipkova A, Farkas J, Novak M, Stepanova M, Krachler M, Veselovsky F, Blaha V, Prechova E, Komarek A, Bohdalkova L, Curik J, Mikova J, Erbanova L, Pacherova P (2014) Zinc isotope systematics in snow and ice accretions in Central European mountains. Chem Geol 388:130–141. https://doi.org/10.1016/j.chemgeo.2014.09.008

Wilson IAG, Staffell I (2018) Rapid fuel switching from coal to natural gas through effective carbon pricing. Nat Energy 3:365–372. https://doi.org/10.1038/s41560-018-0109-0 DOI

Wyttenbach A, Bajo S, Tobler L (1996) Arsenic concentrations in successive needle age classes of Norway spruce (Picea abies [L.] Karst.). Fresenius J Anal Chem 354:668–671. https://doi.org/10.1007/s0021663540668 DOI

Yudovich YE, Ketris MP (2005) Arsenic in coal: a review. Int J Coal Geol 61:141–196 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace