Soil solution data from Bohemian headwater catchments record atmospheric metal deposition and legacy pollution
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
310470
Česká geologická služba
310690
Česká geologická služba
PubMed
36752921
PubMed Central
PMC10097769
DOI
10.1007/s11356-023-25673-7
PII: 10.1007/s11356-023-25673-7
Knihovny.cz E-zdroje
- Klíčová slova
- Groundwater vs. runoff contribution model, Lysimeters, Metal pollution, Shallow response times and recovery, Stable oxygen isotope, Vadose zone,
- MeSH
- kovy * analýza MeSH
- látky znečišťující vodu analýza MeSH
- monitorování životního prostředí * MeSH
- podzemní voda * MeSH
- půda * chemie MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kovy * MeSH
- látky znečišťující vodu MeSH
- půda * MeSH
- voda MeSH
Soil solution chemistry depends largely on mineralogy and organic matter properties of soil horizons with which they interact. Differing lithologies within a given catchment area can influence variability in soil cation exchange capacities and affect solute transport. Zero-tension and tension lysimeters were used to evaluate the fast transport of solutes in the topsoil vs. slow diffusional matrix flow at the subsoil of three contrasting lithology catchments in a mid-elevation mountain forest. Our aim was to test the feasibility of lysimeters' hydrochemical data as a gauge for legacy subsoil pollution. Due to contrasting lithologies, atmospheric legacy pollution prevailing at the soil-regolith interface is differently yet consistently reflected by beryllium, lead, and chromium soil solution concentrations of the three catchments. Geochemical (dis)equilibrium between the soil and soil matrix water governed the hydrochemistry of the soil solutions at the time of collection, potentially contributing to decreased dissolved concentrations with increased depths at sites with higher soil pH. A complementary isotopic δ18O runoff generation model constrained potential seasonal responses and pointed to sufficiently long water-regolith interactions as to permit important seasonal contributions of groundwater enriched in chemical species to the topsoil levels. Our study also reflects subsoil equilibration with atmospheric solutes deposited at the topsoil and thus provides guidance for evaluating legacy pollution in soil profiles derived from contrasting lithology.
Zobrazit více v PubMed
Ackerer J, Ranchoux C, Lucas Y, et al. Investigating the role of deep weathering in critical zone evolution by reactive transport modeling of the geochemical composition of deep fracture water. Geochim Cosmochim Acta. 2021;312:257–278. doi: 10.1016/J.GCA.2021.07.017. DOI
Bache BW (1984) Soil-water interactions. Philos Trans R Soc London B, Biol Sci 305:393–407. 10.1098/RSTB.1984.0066
Blaurock K, Beudert B, Gilfedder BS, et al. Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment. Hydrol Earth Syst Sci. 2021;25:5133–5151. doi: 10.5194/hess-25-5133-2021. DOI
Blažková M. Regional Approaches to Water Pollution in the Environment. Springer; 1996. Black triangle — the most polluted part of Central Europe; pp. 227–249.
Bohdálková L, Novák M, Krachler M et al (2020) Cadmium contents of vertically and horizontally deposited winter precipitation in Central Europe: spatial distribution and long-term trends. Environ Pollut 114949. 10.1016/j.envpol.2020.114949 PubMed
Bohdalkova L, Novak M, Voldrichova P, et al. Atmospheric deposition of beryllium in Central Europe : comparison of soluble and insoluble fractions in rime and snow across a pollution gradient. Sci Total Environ. 2012;439:26–34. doi: 10.1016/j.scitotenv.2012.08.089. PubMed DOI
Brantley SL, Goldhaber MB, Vala Ragnarsdottir K. Crossing disciplines and scales to understand the critical zone. Elements. 2007;3:307–314. doi: 10.2113/gselements.3.5.307. DOI
Buzek F, Hanzlik J, Hruby M, Tryzna P. Evaluation of the runoff components on the slope of an open-cast mine by means of environmental isotopes 18O and T. J Hydrol. 1991;127:23–36. doi: 10.1016/0022-1694(91)90106-R. DOI
Buzek F, Hruška J, Krám P. Three-component model of runoff generation, Lysina catchment, Czech Republic. Water, Air, Soil Pollut. 1995;79:391–408. doi: 10.1007/BF01100449. DOI
Buzek F, Kadlecova R, Knezek M. Model reconstruction of nitrate pollution of riverbank filtration using 15N and 18O data, Karany, Czech Republic. Appl Geochem. 2006;21(4):656–674. doi: 10.1016/j.apgeochem.2005.12.013. DOI
Buzek F, Cejkova B, Jackova I, et al. Tracking sources of PM10 emissions and deposition in the industrial city of Ostrava, Czech Republic: A carbonaceous δ13C-based approach. Atmos Environ. 2023;295:119556. doi: 10.1016/J.ATMOSENV.2022.119556. DOI
Carey SK. Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafr Periglac Process. 2003;14:161–171. doi: 10.1002/PPP.444. DOI
Chuman T, Oulehle F, Zajícová K, Hruška J. The legacy of acidic deposition controls soil organic carbon pools in temperate forests across the Czech Republic. Eur J Soil Sci. 2021;72:1780–1801. doi: 10.1111/EJSS.13073. DOI
Dannhaus N, Wittmann H, Krám P, et al. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios. Geochim Cosmochim Acta. 2018;222:618–641. doi: 10.1016/J.GCA.2017.11.005. DOI
Dewalle DR, Edwards PJ, Swistock BR, et al. Seasonal isotope hydrology of three Appalachian Forest catchments. Hydrol Process. 1997;11:1895–1906. doi: 10.1002/(SICI)1099-1085(199712)11:15. DOI
Evangelou VP (1998) Environmental soil and water chemistry: Principles and applications. John Wiley & Sons, Chichester, p 592
Goss MJ, Ehlers W, Unc A. The role of lysimeters in the development of our understanding of processes in the vadose zone relevant to contamination of groundwater aquifers. Phys Chem Earth, Parts a/b/c. 2010;35:913–926. doi: 10.1016/J.PCE.2010.06.004. DOI
Helliwell RC, Wright RF, Jackson-Blake LA, et al. Assessing recovery from acidification of European surface waters in the year 2010: evaluation of projections made with the MAGIC model in 1995. Environ Sci Technol. 2014;48:13280–13288. doi: 10.1021/es502533c. PubMed DOI
Hsi CD, Langmuir D. Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta. 1985;49:1931–1941. doi: 10.1016/0016-7037(85)90088-2. DOI
Huntington TG, Ryan DF, Hamburg SP. Estimating soil nitrogen and carbon pools in a Northern Hardwood Forest Ecosystem. Soil Sci Soc Am J. 1988;52:1162–1167. doi: 10.2136/sssaj1988.03615995005200040049x. DOI
ICP IM Programme Centre (1998) Manual for integrated monitoring, August 1998 (original PDF version without updates). Online permalink: http://hdl.handle.net/10138/242414. Accessed 1 Nov 2022
Johnson J, Graf Pannatier E, Carnicelli S, et al. The response of soil solution chemistry in European forests to decreasing acid deposition. Glob Chang Biol. 2018;24:3603–3619. doi: 10.1111/GCB.14156. PubMed DOI
Kolář T, Čermák P, Oulehle F, et al. Pollution control enhanced spruce growth in the “Black Triangle” near the Czech-Polish border. Sci Total Environ. 2015;538:703–711. doi: 10.1016/j.scitotenv.2015.08.105. PubMed DOI
Krám P, Čuřík J, Veselovský F, et al. Hydrochemical fluxes and bedrock chemistry in three contrasting catchments underlain by felsic, mafic and ultramafic rocks. Procedia Earth Planet Sci. 2017;17:538–541. doi: 10.1016/J.PROEPS.2016.12.136. DOI
Krám P, Hruška J, Shanley JB. Streamwater chemistry in three contrasting monolithologic Czech catchments. Appl Geochemistry. 2012;27:1854–1863. doi: 10.1016/J.APGEOCHEM.2012.02.020. DOI
Krám P, Myška O, Čuřík J et al (2013) Drainage water chemistry in geochemically contrasting catchments. In: Stojanov R, Žalud Y, Cudlín P, et al. (eds) Global change and resilience, from impacts to responses. Global Change Research Centre AS CR, Brno, pp 173–177
Lindström G, Rodhe A (1992) Transit times of water in soil lysimeters from modeling of oxygen-18. Water, Air, Soil Pollut 651(65):83–100. 10.1007/BF00482751
Makowski V, Julich S, Feger KH, et al. Leaching of dissolved and particulate phosphorus via preferential flow pathways in a forest soil: an approach using zero-tension lysimeters. J Plant Nutr Soil Sci. 2020;183:238–247. doi: 10.1002/JPLN.201900216. DOI
Małoszewski P, Zuber A. Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J Hydrol. 1982;57:207–231. doi: 10.1016/0022-1694(82)90147-0. DOI
Martel R, Castellazzi P, Trépanier L et al (2014) Accuracy of lysimeters for dissolved copper, antimony, lead, and zinc sampling under small arms backstop. Vadose Zo J 13:vzj2014.02.0013. 10.2136/vzj2014.02.0013
McDowell WH, Potter JD. Context dependence in a tropical forest: repeated disturbance reduces soil nitrate response but increases phosphate. Ecosphere. 2022;13:e4068. doi: 10.1002/ECS2.4068. DOI
McGuire KJ, McDonnell JJ. A review and evaluation of catchment transit time modeling. J Hydrol. 2006;330:543–563. doi: 10.1016/J.JHYDROL.2006.04.020. DOI
Miranda-Trevino JC, Coles CA. Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci. 2003;23:133–139. doi: 10.1016/S0169-1317(03)00095-4. DOI
Novak M, Holmden C, Farkas J, et al. Magnesium and calcium isotope systematics in a headwater catchment underlain by amphibolite: constraints on Mg–Ca biogeochemistry in an atmospherically polluted but well-buffered spruce ecosystem (Czech Republic, Central Europe) Catena. 2020;193:104637. doi: 10.1016/j.catena.2020.104637. DOI
Novák M, Kirchner JW, Fottová D, et al. Isotopic evidence for processes of sulfur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, central Europe) Global Biogeochem Cycles. 2005;19:4012. doi: 10.1029/2004GB002396. DOI
Oulehle F, Chuman T, Hruška J, et al. Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry. 2017;132:251–272. doi: 10.1007/s10533-017-0298-9. DOI
Oulehle F, Fischer M, Hruška J, et al. The GEOMON network of Czech catchments provides long-term insights into altered forest biogeochemistry: from acid atmospheric deposition to climate change. Hydrol Process. 2021;35:e14204. doi: 10.1002/hyp.14204. DOI
Patel KF, Fansler SJ, Campbell TP, et al. Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding. Commun Earth Environ. 2021;2:127. doi: 10.1038/s43247-021-00198-4. DOI
Petrash DA, Buzek F, Novak M, et al. Spatially resolved soil solution chemistry in a central European atmospherically polluted high-elevation catchment. SOIL. 2019;5:205–221. doi: 10.5194/soil-5-205-2019. DOI
Petrash DA, Novák M, Bohdálková L, et al. Winter arsenic pollution in 10 forest ecosystems in the mountainous border regions of the Czech Republic. Environ Sci Pollut Res. 2021;28:16107–16121. doi: 10.1007/S11356-020-11738-4/. PubMed DOI
Praus P. Water quality assessment using SVD-based principal component analysis of hydrological data. Water SA. 2005;31:417–422. doi: 10.4314/wsa.v31i4.5132. DOI
Prechova E, Sebek O, Strnad L, et al. Temporal changes in mountain slope gradients in the concentrations of pollutants and Pb isotope ratios near the Ostrava conurbation (Upper Silesia, Czech-Polish Border) Water Air Soil Pollut. 2020;231:1–14. doi: 10.1007/S11270-020-04615-W/. DOI
Rees RM, Parker-Jervis F, Cresser MS. Soil effects on water chemistry in three adjacent upland streams at Glendye in northeast Scotland. Water Res. 1989;23:511–517. doi: 10.1016/0043-1354(89)90143-7. DOI
Shaheen SM, Rinklebe J, Rupp H, Meissner R. Lysimeter trials to assess the impact of different flood–dry-cycles on the dynamics of pore water concentrations of As, Cr, Mo and V in a contaminated floodplain soil. Geoderma. 2014;228–229:5–13. doi: 10.1016/J.GEODERMA.2013.12.030. DOI
Veselý J, Norton SA, Skřivan P, et al. Environmental chemistry of beryllium. Rev Mineral Geochem. 2002;50:291–317. doi: 10.2138/RMG.2002.50.7. DOI
Wenzel WW, Sletten RS, Brandstetter A, et al. Adsorption of trace metals by tension lysimeters: nylon membrane vs. porous ceramic cup. J Environ Qual. 1997;26:1430–1434. doi: 10.2134/JEQ1997.00472425002600050033X. DOI
White AF, Buss H (2003) Natural weathering rates of silicate minerals. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, 2nd edn. Elsevier Science Ltd., pp 115–155
Wickham H (2016) ggplot2 Use R! Springer, Cham, p 268. 10.1007/978-3-319-24277-4
Worrall F, Parker A, Rae JE, Johnson AC. A study of suspended and colloidal matter in the leachate from lysimeters and its role in pesticide transport. J Environ Qual. 1999;28:595–604. doi: 10.2134/JEQ1999.00472425002800020025X. DOI
Zeng X, Rasmussen TC. Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. J Environ Qual. 2005;34:1980–1991. doi: 10.2134/JEQ2004.0337. PubMed DOI