MiR-215-5p Reduces Liver Metastasis in an Experimental Model of Colorectal Cancer through Regulation of ECM-Receptor Interactions and Focal Adhesion
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
16-18257S
Grantová Agentura České Republiky
PubMed
33255928
PubMed Central
PMC7760708
DOI
10.3390/cancers12123518
PII: cancers12123518
Knihovny.cz E-resources
- Keywords
- colorectal cancer, extracellular matrix-receptor interaction, focal adhesion, metastasis, miR-215-5p,
- Publication type
- Journal Article MeSH
Background: Growing evidence suggests that miR-215-5p is a tumor suppressor in colorectal cancer (CRC); however, its role in metastasis remains unclear. This study evaluates the effects of miR-215 overexpression on the metastatic potential of CRC. Methods: CRC cell lines were stably transfected with miR-215-5p and used for in vitro and in vivo functional analyses. Next-generation sequencing and RT-qPCR were performed to study changes on the mRNA level. Results: Overexpression of miR-215-5p significantly reduced the clonogenic potential, migration, and invasiveness of CRC cells in vitro and tumor weight and volume, and liver metastasis in vivo. Transcriptome analysis revealed mRNAs regulated by miR-215-5p and RT-qPCR confirmed results for seven selected genes. Significantly elevated levels of CTNNBIP1 were also observed in patients' primary tumors and liver metastases compared to adjacent tissues, indicating its direct regulation by miR-215-5p. Gene Ontology and KEGG pathway analysis identified cellular processes and pathways associated with miR-215-5p deregulation. Conclusions: MiR-215-5p suppresses the metastatic potential of CRC cells through the regulation of divergent molecular pathways, including extracellular-matrix-receptor interaction and focal adhesion. Although the specific targets of miR-215-5p contributing to the formation of distant metastases must be further elucidated, this miRNA could serve as a promising target for CRC patients' future therapeutic strategies.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
See more in PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
A Issa I., Noureddine M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017;23:5086–5096. doi: 10.3748/wjg.v23.i28.5086. PubMed DOI PMC
Engstrand J., Nilsson H., Strömberg C., Jonas E., Freedman J. Colorectal cancer liver metastases—A population-based study on incidence, management and survival. BMC Cancer. 2018;18:78. doi: 10.1186/s12885-017-3925-x. PubMed DOI PMC
Balchen V., Simon K. Colorectal cancer development and advances in screening. Clin. Interv. Aging. 2016;11:967–976. doi: 10.2147/CIA.S109285. PubMed DOI PMC
Molinari C., Marisi G., Passardi A., Matteucci L., De Maio G., Ulivi P. Heterogeneity in Colorectal Cancer: A Challenge for Personalized Medicine? Int. J. Mol. Sci. 2018;19:3733. doi: 10.3390/ijms19123733. PubMed DOI PMC
Lai E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002;30:363–364. doi: 10.1038/ng865. PubMed DOI
Ding L., Lan Z., Xiong X., Ao H., Feng Y., Gu H., Yu M., Cui Q. The Dual Role of MicroRNAs in Colorectal Cancer Progression. Int. J. Mol. Sci. 2018;19:2791. doi: 10.3390/ijms19092791. PubMed DOI PMC
Khella H., Bakhet M., Allo G., Jewett M., Girgis A., Latif A., Von Both I., Bjarnason G., Yousef G.M. miR-192, miR-194 and miR-215: A convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis. 2013;34:2231–2239. doi: 10.1093/carcin/bgt184. PubMed DOI
Braun C.J., Zhang X., Savelyeva I., Wolff S., Moll U.M., Schepeler T., Ørntoft T.F., Andersen C.L., Dobbelstein M. p53—Responsive MicroRNAs 192 and 215 Are Capable of Inducing Cell Cycle Arrest. Cancer Res. 2008;68:10094–10104. doi: 10.1158/0008-5472.CAN-08-1569. PubMed DOI PMC
Jones M.F., Hara T., Francis P., Li X.L., Bilke S., Zhu Y., Pineda M., Subramanian M., Bodmer W., Lal A. The CDX1-microRNA-215 axis regulates colorectal cancer stem cell differentiation. Proc. Natl. Acad. Sci. USA. 2015;112:E1550–E1558. doi: 10.1073/pnas.1503370112. PubMed DOI PMC
Lu H., Lei X., Liu J., Klaassen C. Regulation of hepatic microRNA expression by hepatocyte nuclear factor 4 alpha. World J. Hepatol. 2017;9:191–208. doi: 10.4254/wjh.v9.i4.191. PubMed DOI PMC
Mechtler P., Singhal R., Kichina J.V., Bard J.E., Buck M.J., Kandel E.S. MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade. Oncotarget. 2015;6:17097–17106. doi: 10.18632/oncotarget.4005. PubMed DOI PMC
Hu J., Sun T., Wang H., Chen Z., Wang S., Yuan L., Liu T., Li H.-R., Wang P., Feng Y., et al. MiR-215 Is Induced Post-transcriptionally via HIF-Drosha Complex and Mediates Glioma-Initiating Cell Adaptation to Hypoxia by Targeting KDM1B. Cancer Cell. 2016;29:49–60. doi: 10.1016/j.ccell.2015.12.005. PubMed DOI PMC
Chen D.-L., Lu Y.-X., Zhang J.-X., Wei X.-L., Wang F.-H., Zeng Z.-L., Pan Z.-Z., Yuan Y.-F., Pelicano H., Chiao P.J., et al. Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics. 2017;7:4836–4849. doi: 10.7150/thno.20942. PubMed DOI PMC
Kong X., Duan Y., Sang Y., Li Y., Zhang H., Liang Y., Liu Y., Zhang N., Yang Q. LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J. Cell. Physiol. 2019;234:9105–9117. doi: 10.1002/jcp.27587. PubMed DOI
Yang Y., Zhang J., Chen X., Xu X., Cao G., Li H., Wu T. LncRNA FTX sponges miR-215 and inhibits phosphorylation of vimentin for promoting colorectal cancer progression. Gene Ther. 2018;25:321–330. doi: 10.1038/s41434-018-0026-7. PubMed DOI
Vychytilova-Faltejskova P., Slaby O. MicroRNA-215: From biology to theranostic applications. Mol. Asp. Med. 2019;70:72–89. doi: 10.1016/j.mam.2019.03.002. PubMed DOI
Necela B.M., Carr J.M., Asmann Y.W., Thompson E.A. Differential Expression of MicroRNAs in Tumors from Chronically Inflamed or Genetic (APCMin/+) Models of Colon Cancer. PLoS ONE. 2011;6:e18501. doi: 10.1371/journal.pone.0018501. PubMed DOI PMC
Faltejskova P., Svoboda M., Srutova K., Mlcochova J., Besse A., Nekvindova J., Radova L., Fabian P., Slaba K., Kiss I., et al. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J. Cell. Mol. Med. 2012;16:2655–2666. doi: 10.1111/j.1582-4934.2012.01579.x. PubMed DOI PMC
Vychytilova-Faltejskova P., Merhautova J., Machackova T., Gutierrez-Garcia I., Garcia-Solano J., Radova L., Brchnelova D., Slaba K., Svoboda M., Halamkova J., et al. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis. 2017;6:1–14. doi: 10.1038/s41389-017-0006-6. PubMed DOI PMC
Li S., Gao J., Gu J., Yuan J., Hua D., Shen L. MicroRNA-215 inhibits relapse of colorectal cancer patients following radical surgery. Med. Oncol. 2013;30:549. doi: 10.1007/s12032-013-0549-0. PubMed DOI
Hou Y., Zhen J., Xu X., Zhen K., Zhu B., Pan R., Zhao C. miR-215 functions as a tumor suppressor and directly targets ZEB2 in human non-small cell lung cancer. Oncol. Lett. 2015;10:1985–1992. doi: 10.3892/ol.2015.3587. PubMed DOI PMC
Yao Y., Shen H., Zhou Y., Yang Z., Hu T. MicroRNA-215 suppresses the proliferation, migration and invasion of non-small cell lung carcinoma cells through the downregulation of matrix metalloproteinase-16 expression. Exp. Ther. Med. 2018;15:3239–3246. doi: 10.3892/etm.2018.5869. PubMed DOI PMC
Gao J.B., Zhu M.N., Zhu X.L. miRNA-215-5p suppresses the aggressiveness of breast cancer cells by targeting Sox9. FEBS Open Bio. 2019;9:1957–1967. doi: 10.1002/2211-5463.12733. PubMed DOI PMC
Yao J., Zhang P., Li J., Xu W. MicroRNA-215 acts as a tumor suppressor in breast cancer by targeting AKT serine/threonine kinase 1. Oncol. Lett. 2017;14:1097–1104. doi: 10.3892/ol.2017.6200. PubMed DOI PMC
Singh A., Bhattacharyya N., Srivastava A., Pruett N., Ripley R.T., Schrump D.S., Hoang C.D. MicroRNA-215-5p Treatment Suppresses Mesothelioma Progression via the MDM2-p53-Signaling Axis. Mol. Ther. 2019;27:1665–1680. doi: 10.1016/j.ymthe.2019.05.020. PubMed DOI PMC
Ren Y., Shang J., Li J., Liu W., Zhang Z., Yuan J., Yang M. The long noncoding RNA PCAT-1 links the microRNA miR-215 to oncogene CRKL-mediated signaling in hepatocellular carcinoma. J. Biol. Chem. 2017;292:17939–17949. doi: 10.1074/jbc.M116.773978. PubMed DOI PMC
Wei Y., Sun J., Li X. MicroRNA-215 enhances invasion and migration by targeting retinoblastoma tumor suppressor gene 1 in high-grade glioma. Biotechnol. Lett. 2016;39:197–205. doi: 10.1007/s10529-016-2251-8. PubMed DOI
Chen Z., Liu K., Li L., Chen Y., Du S. miR-215 promotes cell migration and invasion of gastric cancer by targeting Retinoblastoma tumor suppressor gene 1. Pathol. Res. Pract. 2017;213:889–894. doi: 10.1016/j.prp.2017.06.006. PubMed DOI
Li N., Zhang Q.-Y., Zou J.-L., Li Z.-W., Tian T.-T., Dong B., Liu X.-J., Ge S., Zhu Y., Gao J., et al. miR-215 promotes malignant progression of gastric cancer by targeting RUNX1. Oncotarget. 2016;7:4817–4828. doi: 10.18632/oncotarget.6736. PubMed DOI PMC
Mamdouh S., Khorshed F.E., Aboushousha T., Hamdy H., Diab A., Seleem M., Saber M. Evaluation of Mir-224, Mir-215 and Mir-143 as Serum Biomarkers for HCV Associated Hepatocellular Carcinoma. Asian Pac. J. Cancer Prev. 2017;18:3167–3171. PubMed PMC
Karaayvaz M., Pal T., Song B., Zhang C., Georgakopoulos P., Mehmood S., Burke S., Shroyer K., Ju J. Prognostic Significance of miR-215 in Colon Cancer. Clin. Color. Cancer. 2011;10:340–347. doi: 10.1016/j.clcc.2011.06.002. PubMed DOI PMC
Agostini A., Brunetti M., Davidson B., Tropé C.G., Eriksson A.G.Z., Heim S., Panagopoulos I., Micci F. The microRNA miR-192/215 family is upregulated in mucinous ovarian carcinomas. Sci. Rep. 2018;8:11069. doi: 10.1038/s41598-018-29332-7. PubMed DOI PMC
Xu X., Ding Y., Yao J., Wei Z., Jin H., Chen C., Feng J., Ying R. miR-215 Inhibits Colorectal Cancer Cell Migration and Invasion via Targeting Stearoyl-CoA Desaturase. Comput. Math. Methods Med. 2020;2020:1–10. doi: 10.1155/2020/5807836. PubMed DOI PMC
Mauvoisin D., Charfi C., Lounis M.A., Rassart E., Mounier C. Decreasing stearoyl-CoA desaturase-1 expression inhibits βcatenin signaling in breast cancer cells. Cancer Sci. 2012;104:36–42. doi: 10.1111/cas.12032. PubMed DOI PMC
Lin Y., Jin Y., Xu T., Zhou S., Cui M. MicroRNA-215 targets NOB1 and inhibits growth and invasion of epithelial ovarian cancer. Am. J. Transl. Res. 2017;9:466–477. PubMed PMC
Tong Y.-Q., Liu B., Zheng H.-Y., Gu J., Liu H., Li F., Tan B.-H., Hartman M., Song C., Li Y. MiR-215, an activator of the CTNNBIP1/β-catenin pathway, is a marker of poor prognosis in human glioma. Oncotarget. 2015;6:25024–25033. doi: 10.18632/oncotarget.4622. PubMed DOI PMC
Mu J., Pang Q., Guo Y.-H., Chen J.-G., Zeng W., Huang Y.-J., Zhang J., Feng B. Functional Implications of MicroRNA-215 in TGF-β1-Induced Phenotypic Transition of Mesangial Cells by Targeting CTNNBIP1. PLoS ONE. 2013;8:e58622. doi: 10.1371/journal.pone.0058622. PubMed DOI PMC
Senanayake U., Das S., Vesely P., Alzoughbi W., Fröhlich L.F., Chowdhury P., Leuschner I., Hoefler G., Guertl B. miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis. 2012;33:1014–1021. doi: 10.1093/carcin/bgs126. PubMed DOI
A Blair S., Kane S.V., Clayburgh D.R., Turner J.R. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab. Investig. 2006;86:191–201. doi: 10.1038/labinvest.3700373. PubMed DOI
E Axelrad J., Lichtiger S., Yajnik V. Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol. 2016;22:4794–4801. doi: 10.3748/wjg.v22.i20.4794. PubMed DOI PMC
Fazal F., Gu L., Ihnatovych I., Han Y., Hu W., Antic N., Carreira F., Blomquist J., Hope T., Ucker D., et al. Inhibiting Myosin Light Chain Kinase Induces Apoptosis In Vitro and In Vivo. Mol Cell Biol. 2005;25:6259–6266. doi: 10.1128/MCB.25.14.6259-6266.2005. PubMed DOI PMC
Patergnani S., Marchi S., Rimessi A., Bonora M., Giorgi C., Mehta K.D., Pinton P. PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy. 2013;9:1367–1385. doi: 10.4161/auto.25239. PubMed DOI
Shin B.K., Kim C.Y., Jung W.Y., Lee H.J., Kim H.K., Kim A. Proteomic analysis reveals overexpression of moesin and cytokeratin 17 proteins in colorectal carcinoma. Oncol. Rep. 2011;27:608–620. doi: 10.3892/or.2011.1545. PubMed DOI
Wang S., Qiu J., Liu L., Su C., Qi L., Huang C., Chen X., Zhang Y., Ye Y., Ding Y., et al. CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. J. Exp. Clin. Cancer Res. 2020;39:1–11. doi: 10.1186/s13046-020-01673-0. PubMed DOI PMC
Kumaradevan S., Lee S.Y., Richards S., Lyle C., Zhao Q., Tapan U., Jiangliu Y., Ghumman S., Walker J., Belghasem M., et al. c-Cbl Expression Correlates with Human Colorectal Cancer Survival and Its Wnt/β-Catenin Suppressor Function Is Regulated by Tyr371 Phosphorylation. Am. J. Pathol. 2018;188:1921–1933. doi: 10.1016/j.ajpath.2018.05.007. PubMed DOI PMC
Melo F.D.S.E., Kurtova A.V., Harnoss J.M., Kljavin N., Hoeck J.D., Hung J., Anderson J.E., Storm E.E., Modrusan Z., Koeppen J., et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nat. Cell Biol. 2017;543:676–680. doi: 10.1038/nature21713. PubMed DOI
Barker N., Van Es J.H., Kuipers J., Kujala P., Born M.V.D., Cozijnsen M., Haegebarth A., Korving J., Begthel H., Peters P.J., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nat. Cell Biol. 2007;449:1003–1007. doi: 10.1038/nature06196. PubMed DOI
Ullmann P., Nurmik M., Schmitz M., Rodriguez F., Weiler J., Qureshi-Baig K., Felten P., Nazarov P.V., Nicot N., Zuegel N., et al. Tumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity. Cancer Lett. 2019;450:32–41. doi: 10.1016/j.canlet.2019.02.030. PubMed DOI
Babraham Bioinformatics. FastQC version 0.11.2. [(accessed on 10 January 2020)];2014 Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Okonechnikov K., Conesa A., García-Alcalde F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC
Wingett S.W., Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research. 2018;7:1338. doi: 10.12688/f1000research.15931.2. PubMed DOI PMC
Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Yu G., Wang L.-G., Han Y., He Q.-Y. ClusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. OMICS A J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
The Gene Ontology Resource: 20 years and still Going strong. Nucleic Acids Res. 2019;47:D330–D338. doi: 10.1093/nar/gky1055. PubMed DOI PMC