Thermodynamic Explanation of Landau Damping by Reduction to Hydrodynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33265547
PubMed Central
PMC7512976
DOI
10.3390/e20060457
PII: e20060457
Knihovny.cz E-zdroje
- Klíčová slova
- Ehrenfest reduction, Landau damping, entropy, non-equilibrium thermodynamics,
- Publikační typ
- časopisecké články MeSH
Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, density and kinetic energy density, which are integrals of the distribution function, approach spatially homogeneous states strongly, which is accompanied by growth of the hydrodynamic entropy. Such a behavior can be seen when the Vlasov equation is reduced to the evolution equations for density and kinetic energy density by means of the Ehrenfest reduction.
Zobrazit více v PubMed
Mouhot C., Villani C. On Landau damping. Acta Math. 2011;207:29–201. doi: 10.1007/s11511-011-0068-9. DOI
Jeans J.H. The Stability of a Spherical Nebula. Phil. Trans. R. Soc. Lond. A. 1902;199:1–53. doi: 10.1098/rsta.1902.0012. DOI
Landau L. On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz. 1946;16:574–586.
Pitaevskii L., Lifshitz E. Physical Kinetics. Elsevier; New York, NY, USA: 2012.
Villani C. Particle systems and nonlinear Landau damping. Phys. Plasmas. 2014;21:030901. doi: 10.1063/1.4867237. DOI
Chen F. Introduction to Plasma Physics. Plenum Press; New York, NY, USA: 1974.
Levin Y., Pakter R., Rizzato F.B., Teles T.N., Benetti F.P. Nonequilibrium statistical mechanics of systems with long-range interactions. Phys. Rep. 2014;535:1–60. doi: 10.1016/j.physrep.2013.10.001. DOI
Pakter R., Levin Y. Entropy production in systems with long range interactions. J. Stat. Mech. 2017;2017:044001. doi: 10.1088/1742-5468/aa657f. DOI
Kraus M., Kormann K., Morrison P., Sonnendrücker E. GEMPIC: Geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 2017;83 doi: 10.1017/S002237781700040X. DOI
Perin M., Chandre C., Morrison P.J., Tassi E. Hamiltonian closures for fluid models with four moments by dimensional analysis. J. Phys. A. 2015;48:275501. doi: 10.1088/1751-8113/48/27/275501. DOI
Perin M., Chandre C., Morrison P., Tassi E. Higher-order Hamiltonian fluid reduction of Vlasov equation. Ann. Phys. 2014;348:50–63. doi: 10.1016/j.aop.2014.05.011. DOI
Grad H. Encyclopedia of Physics. Springer; Berlin, Germany: 1958. Principles of Kinetic Theory of Gases.
Grmela M., Hong L., Jou D., Lebon G., Pavelka M. Hamiltonian and Godunov structures of the Grad hierarchy. Phys. Rev. E. 2017;95:033121. doi: 10.1103/PhysRevE.95.033121. PubMed DOI
Grmela M., Klika V., Pavelka M. Reductions and extensions in mesoscopic dynamics. Phys. Rev. E. 2015;92:032111. doi: 10.1103/PhysRevE.92.032111. PubMed DOI
Villani C. Bolzano Lecture: Of Triangles, Gases, Prices and Men. [(accessed on 1 June 2018)]; Available online: https://www.youtube.com/watch?v=AtOG61tL5hE&feature=youtu.be#t=1h43m.
Zwanzig R. Nonequilibrium Statistical Mechanics. Oxford University Press; Oxford, UK: 2001.
Öttinger H. Beyond Equilibrium Thermodynamics. Wiley; Hoboken, NJ, USA: 2005.
Grmela M., Pavelka M. Landau damping in the multiscale Vlasov theory. Kinet. Relat. Model. 2017;11:521–545. doi: 10.3934/krm.2018023. DOI
Gorban A.N., Karlin I.V., Öttinger H.C., Tatarinova L.L. Ehrenfest’s argument extended to a formalism of nonequilibrium thermodynamics. Phys. Rev. E. 2001;63:066124. doi: 10.1103/PhysRevE.63.066124. PubMed DOI
Karlin I.V., Tatarinova L.L., Gorban A.N., Öttinger H.C. Irreversibility in the short memory approximation. Phys. A. 2003;327:399–424. doi: 10.1016/S0378-4371(03)00510-7. DOI
Jaynes E.T. Foundations of probability theory and statistical mechanics. In: Bunge M., editor. Delaware Seminar in the Foundation of Physics. Springer; Berlin, Germany: 1967.
Morrison P.J., Greene J.M. Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. Phys. Rev. Lett. 1980;45:790–794. doi: 10.1103/PhysRevLett.45.790. DOI
Marsden J., Weinstein A. The Hamiltonian-Structure of the Maxwell-Vlasov Equations. Phys. D. 1982;4:394–406. doi: 10.1016/0167-2789(82)90043-4. DOI
Esen O., Gümral H. Geometry of Plasma Dynamics II: Lie Algebra of Hamiltonian Vector Fields. J. Geom. Mech. 2012;4:239–269. doi: 10.3934/jgm.2012.4.239. DOI
Pavelka M., Klika V., Esen O., Grmela M. A hierarchy of Poisson brackets. Phys. D. 2016;335:54–69. doi: 10.1016/j.physd.2016.06.011. DOI
Shannon C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948;27:379–423, 623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Fecko M. Differential Geometry and Lie Groups for Physicists. Cambridge University Press; Cambridge, UK: 2006.
Leimkuhler B., Reich S. Simulating Hamiltonian Dynamics. Cambridge University Press; Cambridge, UK: 2005. Cambridge Monographs on Applied and Computational Mathematics.
Callen H. Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley; Hoboken, NJ, USA: 1960.
Clebsch A. Über die Integration der Hydrodynamische Gleichungen. J. Reine Angew. Math. 1895;56:1–10. (In German)
Marsden J., Weinstein A. Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Phys. D. 1983;7:305–323. doi: 10.1016/0167-2789(83)90134-3. DOI
Van Saarloos W., Bedeaux D., Mazur P. Hydrodynamics for an ideal fluid: Hamiltonian formalism and Liouville-equation. Phys. A. 1981;107:109–125. doi: 10.1016/0378-4371(81)90026-1. DOI
De Groot S.R., Mazur P. Non-Equilibrium Thermodynamics. Dover Publications; New York, NY, USA: 1984.
Pavelka M., Klika V., Grmela M. Time reversal in nonequilibrium thermodynamics. Phys. Rev. E. 2014;90:062131. doi: 10.1103/PhysRevE.90.062131. PubMed DOI
Gradient and GENERIC time evolution towards reduced dynamics
Dynamic Maximum Entropy Reduction