Thermodynamic Explanation of Landau Damping by Reduction to Hydrodynamics

. 2018 Jun 12 ; 20 (6) : . [epub] 20180612

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33265547

Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, density and kinetic energy density, which are integrals of the distribution function, approach spatially homogeneous states strongly, which is accompanied by growth of the hydrodynamic entropy. Such a behavior can be seen when the Vlasov equation is reduced to the evolution equations for density and kinetic energy density by means of the Ehrenfest reduction.

Zobrazit více v PubMed

Mouhot C., Villani C. On Landau damping. Acta Math. 2011;207:29–201. doi: 10.1007/s11511-011-0068-9. DOI

Jeans J.H. The Stability of a Spherical Nebula. Phil. Trans. R. Soc. Lond. A. 1902;199:1–53. doi: 10.1098/rsta.1902.0012. DOI

Landau L. On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz. 1946;16:574–586.

Pitaevskii L., Lifshitz E. Physical Kinetics. Elsevier; New York, NY, USA: 2012.

Villani C. Particle systems and nonlinear Landau damping. Phys. Plasmas. 2014;21:030901. doi: 10.1063/1.4867237. DOI

Chen F. Introduction to Plasma Physics. Plenum Press; New York, NY, USA: 1974.

Levin Y., Pakter R., Rizzato F.B., Teles T.N., Benetti F.P. Nonequilibrium statistical mechanics of systems with long-range interactions. Phys. Rep. 2014;535:1–60. doi: 10.1016/j.physrep.2013.10.001. DOI

Pakter R., Levin Y. Entropy production in systems with long range interactions. J. Stat. Mech. 2017;2017:044001. doi: 10.1088/1742-5468/aa657f. DOI

Kraus M., Kormann K., Morrison P., Sonnendrücker E. GEMPIC: Geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 2017;83 doi: 10.1017/S002237781700040X. DOI

Perin M., Chandre C., Morrison P.J., Tassi E. Hamiltonian closures for fluid models with four moments by dimensional analysis. J. Phys. A. 2015;48:275501. doi: 10.1088/1751-8113/48/27/275501. DOI

Perin M., Chandre C., Morrison P., Tassi E. Higher-order Hamiltonian fluid reduction of Vlasov equation. Ann. Phys. 2014;348:50–63. doi: 10.1016/j.aop.2014.05.011. DOI

Grad H. Encyclopedia of Physics. Springer; Berlin, Germany: 1958. Principles of Kinetic Theory of Gases.

Grmela M., Hong L., Jou D., Lebon G., Pavelka M. Hamiltonian and Godunov structures of the Grad hierarchy. Phys. Rev. E. 2017;95:033121. doi: 10.1103/PhysRevE.95.033121. PubMed DOI

Grmela M., Klika V., Pavelka M. Reductions and extensions in mesoscopic dynamics. Phys. Rev. E. 2015;92:032111. doi: 10.1103/PhysRevE.92.032111. PubMed DOI

Villani C. Bolzano Lecture: Of Triangles, Gases, Prices and Men. [(accessed on 1 June 2018)]; Available online: https://www.youtube.com/watch?v=AtOG61tL5hE&feature=youtu.be#t=1h43m.

Zwanzig R. Nonequilibrium Statistical Mechanics. Oxford University Press; Oxford, UK: 2001.

Öttinger H. Beyond Equilibrium Thermodynamics. Wiley; Hoboken, NJ, USA: 2005.

Grmela M., Pavelka M. Landau damping in the multiscale Vlasov theory. Kinet. Relat. Model. 2017;11:521–545. doi: 10.3934/krm.2018023. DOI

Gorban A.N., Karlin I.V., Öttinger H.C., Tatarinova L.L. Ehrenfest’s argument extended to a formalism of nonequilibrium thermodynamics. Phys. Rev. E. 2001;63:066124. doi: 10.1103/PhysRevE.63.066124. PubMed DOI

Karlin I.V., Tatarinova L.L., Gorban A.N., Öttinger H.C. Irreversibility in the short memory approximation. Phys. A. 2003;327:399–424. doi: 10.1016/S0378-4371(03)00510-7. DOI

Jaynes E.T. Foundations of probability theory and statistical mechanics. In: Bunge M., editor. Delaware Seminar in the Foundation of Physics. Springer; Berlin, Germany: 1967.

Morrison P.J., Greene J.M. Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. Phys. Rev. Lett. 1980;45:790–794. doi: 10.1103/PhysRevLett.45.790. DOI

Marsden J., Weinstein A. The Hamiltonian-Structure of the Maxwell-Vlasov Equations. Phys. D. 1982;4:394–406. doi: 10.1016/0167-2789(82)90043-4. DOI

Esen O., Gümral H. Geometry of Plasma Dynamics II: Lie Algebra of Hamiltonian Vector Fields. J. Geom. Mech. 2012;4:239–269. doi: 10.3934/jgm.2012.4.239. DOI

Pavelka M., Klika V., Esen O., Grmela M. A hierarchy of Poisson brackets. Phys. D. 2016;335:54–69. doi: 10.1016/j.physd.2016.06.011. DOI

Shannon C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948;27:379–423, 623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI

Fecko M. Differential Geometry and Lie Groups for Physicists. Cambridge University Press; Cambridge, UK: 2006.

Leimkuhler B., Reich S. Simulating Hamiltonian Dynamics. Cambridge University Press; Cambridge, UK: 2005. Cambridge Monographs on Applied and Computational Mathematics.

Callen H. Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley; Hoboken, NJ, USA: 1960.

Clebsch A. Über die Integration der Hydrodynamische Gleichungen. J. Reine Angew. Math. 1895;56:1–10. (In German)

Marsden J., Weinstein A. Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Phys. D. 1983;7:305–323. doi: 10.1016/0167-2789(83)90134-3. DOI

Van Saarloos W., Bedeaux D., Mazur P. Hydrodynamics for an ideal fluid: Hamiltonian formalism and Liouville-equation. Phys. A. 1981;107:109–125. doi: 10.1016/0378-4371(81)90026-1. DOI

De Groot S.R., Mazur P. Non-Equilibrium Thermodynamics. Dover Publications; New York, NY, USA: 1984.

Pavelka M., Klika V., Grmela M. Time reversal in nonequilibrium thermodynamics. Phys. Rev. E. 2014;90:062131. doi: 10.1103/PhysRevE.90.062131. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Gradient and GENERIC time evolution towards reduced dynamics

. 2020 May ; 378 (2170) : 20190472. [epub] 20200330

Dynamic Maximum Entropy Reduction

. 2019 Jul 22 ; 21 (7) : . [epub] 20190722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...