Gradient and GENERIC time evolution towards reduced dynamics
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
32223400
PubMed Central
PMC7134954
DOI
10.1098/rsta.2019.0472
Knihovny.cz E-resources
- Keywords
- GENERIC, multiscale thermodynamics, pattern recognition, reduction, vector fields,
- Publication type
- Journal Article MeSH
Reduction of a mesoscopic dynamical theory to equilibrium thermodynamics brings to the latter theory the fundamental thermodynamic relation (i.e. entropy as a function of the thermodynamic state variables). The reduction is made by following the mesoscopic time evolution to its conclusion, i.e. to fixed points at which the time evolution ceases to continue. The approach to fixed points is driven by entropy, that, if evaluated at the fixed points, becomes the thermodynamic entropy. Since the fixed points are parametrized by the thermodynamic state variables (by constants of motion), the thermodynamic entropy arises as a function of the thermodynamic state variables and thus the final outcome of the reduction is the fundamental thermodynamic relation. This reduction process extends also to reductions in which the reduced theory still involves the time evolution (e.g. reduction of kinetic theory to hydrodynamics). The essence of the extension is the replacement of the mesoscopic time evolution of the state variables with the corresponding mesoscopic time evolution of the vector field (i.e. of the fluxes). The fixed point in this flux time evolution is the vector field generating the reduced mesoscopic time evolution. The flux-entropy driving the flux time evolution becomes, if evaluated at the fixed point, the flux fundamental thermodynamic relation in the reduced dynamical theory. We show that the flux-entropy is a potential related to the entropy production. This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.
See more in PubMed
Jaynes ET. 1967. Foundations of probability theory and statistical mechanics. In Delaware Seminar in the Foundation of Physics (ed. M Bunge). New York, NY: Springer.
Pavelka M, Klika V, Grmela M. 2018. Multiscale thermo-dynamics. Berlin, Germany: de Gruyter.
Jizba P, Korbel J. 2019. Maximum entropy principle in statistical inference: case for Non-Shannonian entropies. Phys. Rev. Lett. 122, 120601 (10.1103/PhysRevLett.122.120601) PubMed DOI
Grmela M, Klika V, Pavelka M. 2015. Reductions and extensions in mesoscopic dynamics. Phys. Rev. E 92, 032111 (10.1103/PhysRevE.92.032111) PubMed DOI
Klika V, Pavelka M, Vágner P, Grmela M. 2019. Dynamic maximum entropy reduction. Entropy 21, 715 (10.3390/e21070715) PubMed DOI PMC
Mielke A. 2011. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24, 1329–1346. (10.1088/0951-7715/24/4/016) DOI
Touchette H. 2009. The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69. (10.1016/j.physrep.2009.05.002) DOI
Janečka A, Pavelka M. 2018. Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics. Contin. Mech. Thermodyn. 30, 917–941. (10.1007/s00161-018-0667-1) DOI
Callen HB. 1960. Thermodynamics: an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. Hoboken, NJ: Wiley; Available from: http://books.google.cz/books?id=mf5QAAAAMAAJ.
Boltzmann L. 1896. Vorlesungen ueber Gastheorie, I Teil. Leipzig, Germany: Barth.
Gibbs JW. 1984. Collected works. New York, NY: Green and Comp. Longmans.
Grmela M, Pavelka M, Klika V, Cao BY, Bendian N. 2019. Entropy and entropy production in multiscale dynamics. J. Non-Equilib. Thermodyn. 44, 217–233. (10.1515/jnet-2018-0059) DOI
Esen O, Grmela M, Gŭmral H, Pavelka M. 2019. Lifts of symmetric tensors: fluids, plasma, and grad hierarchy. Entropy 21, 907 (10.3390/e21090907) DOI
Pavelka M, Grmela M. 2019. Braun-Le Chatelier principle in dissipative thermodynamics. Proc. Accad. Peloritana Pericolanti 97, A22.
Marsden JE, Morrison PJ, Weinstein A. 1984. The hamiltonian structure of the BBGKY hierarchy equations. Cont. Math. AMS 28, 115–124. (10.1090/conm/028/751977) DOI
Grad H. 1958. Principles of kinetic theory of gases. In Encyclopedia of physics, vol. 12. Berlin, Germany: Springer.
Grmela M, Hong L, Jou D, Lebon G, Pavelka M. 2017. Hamiltonian and Godunov structures of the Grad hierarchy. Phys. Rev. E 95, 033121 (10.1103/PhysRevE.95.033121) PubMed DOI
Ruggeri T, Sugiyama M. 2015. Rational extended thermodynamics beyond the monoatomic gas. Heidelberg, Germany: Springer.
de Groot SR, Mazur P. 1984. Non-equilibrium thermodynamics. New York, NY: Dover Publications.
Berezovski A, Ván P. 2017. Internal variables in thermoelasticity. Solid Mechanics and Its Applications Springer International Publishing.
Cahn JW, Hilliard JE. 1958. Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258–267. (10.1063/1.1744102) DOI
Ginzburg VL, Landau LD. 1950. On the theory of superconductivity. Zhur. Eksp. Theor. Fiz. 20, 1064–1082.
Bulíček M, Málek J, Průša V. 2019. Thermodynamics and stability of non-equilibrium steady states in open systems. Entropy 21, 704 (10.3390/e21070704) PubMed DOI PMC
Roubíček T. 2005. Nonlinear partial differential equations with applications. International Series of Numerical Mathematics Basel, Switzerland: Birkhäuser Basel.
Mielke A, Renger DRM, Peletier MA. 2016. A generalization of Onsager’s reciprocity relations to gradient flows with nonlinear mobility. J. Non-Equilib. Thermodyn. 41, 141–149. (10.1515/jnet-2015-0073) DOI
Mielke A, Peletier MA, Renger DRM. 2014. On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41, 1293–1327. (10.1007/s11118-014-9418-5) DOI
Clebsch A. 1895. Über die Integration der Hydrodynamische Gleichungen. Journal für die reine und angewandte Mathematik 56, 1–10.
Arnold VI. 1966. Sur la géometrie différentielle des groupes de Lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits. Ann. de l’institut Fourier 16, 319–361. (10.5802/aif.233) DOI
Marsden JE, Ratiu TS, Weinstein A. 1984. Semidirect products and reduction in mechanics. Trans. Am. Math. Soc. 281, 147–177. (10.1090/S0002-9947-1984-0719663-1) DOI
Holm DD, Marsden JE, Ratiu TS. 1998. The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81. (10.1006/aima.1998.1721) DOI
Ehrenfest P, Ehrenfest T. 1990. The conceptual foundations of the statistical approach in mechanics. Dover Books on Physics New York, NY: Dover Publications.
Gorban AN, Karlin IV, Öttinger HC, Tatarinova LL. 2001. Ehrenfest’s argument extended to a formalism of nonequilibrium thermodynamics. Phys. Rev. E 63, 066124 (10.1103/PhysRevE.63.066124) PubMed DOI
Pavelka M, Klika V, Grmela M. 2019. Ehrenfest regularization of Hamiltonian systems. Physica D 399, 193–210. (10.1016/j.physd.2019.06.006) DOI
Villani C. 2014. Particle systems and nonlinear Landau damping. Phys. Plasmas 21, 030901 (10.1063/1.4867237) DOI
Grmela M, Öttinger HC. 1997. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632. (10.1103/PhysRevE.56.6620) DOI
Öttinger HC, Grmela M. 1997. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633–6655. (10.1103/PhysRevE.56.6633) DOI
Öttinger HC. 2005. Beyond equilibrium thermodynamics. Wiley.
Grmela M. 2018. GENERIC guide to the multiscale dynamics and thermodynamics. J. Phys. Commun. 2, 032001 (10.1088/2399-6528/aab642) DOI
Peshkov I, Pavelka M, Romenski E, Grmela M. 2018. Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Contin. Mech. Thermodyn. 30, 1343–1378. (10.1007/s00161-018-0621-2) DOI
Grmela M, Pavelka M. 2018. Landau damping in the multiscale Vlasov theory. Kinetic Related Models 11, 521–545. (10.3934/krm.2018023) DOI
Pavelka M, Klika V, Grmela M. 2018. Thermodynamic explanation of Landau damping by reduction to hydrodynamics. Entropy 20, 457 (10.3390/e20060457) PubMed DOI PMC
Després B. 2019. Scattering structure and landau damping for linearized Vlasov equations with inhomogeneous Boltzmannian states. Ann. Henri. Poincaré 20, 2767–2818. (10.1007/s00023-019-00818-y) DOI
Fenichel N. 1979. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98. (10.1016/0022-0396(79)90152-9) DOI
Svärd M. 2018. A new Eulerian model for viscous and heat conducting compressible flows. Physica A 506, 350–375. (10.1016/j.physa.2018.03.097) DOI
Pavelka M, Klika V, Esen O, Grmela M. 2016. A hierarchy of Poisson brackets in non-equilibrium thermodynamics. Physica D 335, 54–69. (10.1016/j.physd.2016.06.011) DOI
Brenner H. 2006. Fluid mechanics revisited. Physica A 370, 190–224. (10.1016/j.physa.2006.03.066) DOI
Brenner H. 2012. Beyond Navier–Stokes. Int. J. Eng. Sci. 54, 67–98. (10.1016/j.ijengsci.2012.01.006) DOI
Bedeaux D, Kjelstrup S, Öttinger HC. 2006. On a possible difference between the barycentric velocity and the velocity that gives translational momentum in fluids. Physica A 371, 177–187. (10.1016/j.physa.2006.05.023) DOI
Grmela M. 2014. Mass flux in extended and classical hydrodynamics. Phys. Rev. E 89, 063024 (10.1103/PhysRevE.89.063024) PubMed DOI
Öttinger HC, Struchtrup H, Liu M. 2009. Inconsistency of a dissipative contribution to the mass flux in hydrodynamics. Phys. Rev. E 80, 056303 (10.1103/PhysRevE.80.056303) PubMed DOI
Ván P, Pavelka M, Grmela M. 2016. Extra mass flux in fluid mechanics. J. Non-Equilib. Thermodyn. 42, 133–151. (10.1515/jnet-2016-0058) DOI
Chapman S, Cowling TG, Burnett D, Cercignani C. 1990. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge Mathematical Library Cambridge, UK: Cambridge University Press; Available from: https://books.google.cz/books?id=Cbp5JP2OTrwC.
Saint-Raymond L. 2014. A mathematical pde perspective on the Chapman-Enskog expansion. Bull. (New Series) Am. Math. Soc. 51, 247–275. (10.1090/S0273-0979-2013-01440-X) DOI
Gorban AN, Karlin I. 2014. Hilbert’s 6th problem: exact and approximate hydrodynamic manifolds for kinetic equations. Bull. (New Series) Am. Math. Soc. 51, 187–246. (10.1090/S0273-0979-2013-01439-3) DOI
Gorban AN, Karlin IV. 2005. Invariant manifolds for physical and chemical kinetics. Lecture Notes in Physics Berlin, Germany: Springer; Available from: http://books.google.cz/books?id=hjvjPmL5rPwC.
Karlin IV, Tatarinova LL, Gorban AN, Öttinger HC. 2003. Irreversibility in the short memory approximation. Physica A 327, 399–424. (10.1016/S0378-4371(03)00510-7) DOI
Turkington B. 2013. An optimization principle for deriving nonequilibrium statistical models of hamiltonian dynamics. J. Stat. Phys. 152, 569–597. (10.1007/s10955-013-0778-9) DOI
Dynamic and Renormalization-Group Extensions of the Landau Theory of Critical Phenomena