Maximum Entropy Principle in Statistical Inference: Case for Non-Shannonian Entropies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
I 3073
Austrian Science Fund FWF - Austria
- Publikační typ
- časopisecké články MeSH
In this Letter, we show that the Shore-Johnson axioms for the maximum entropy principle in statistical estimation theory account for a considerably wider class of entropic functional than previously thought. Apart from a formal side of the proof where a one-parameter class of admissible entropies is identified, we substantiate our point by analyzing the effect of weak correlations and by discussing two pertinent examples: two-qubit quantum system and transverse-momentum behavior of hadrons in high-energy proton-proton collisions.
Complexity Science Hub Vienna Josefstädter Strasse 39 1080 Vienna Austria
FNSPE Czech Technical University Prague Břehová 7 115 19 Prague Czech Republic
Citace poskytuje Crossref.org
Causal Inference in Time Series in Terms of Rényi Transfer Entropy
From Rényi Entropy Power to Information Scan of Quantum States
Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle
Gradient and GENERIC time evolution towards reduced dynamics
Dynamic Maximum Entropy Reduction